Mathematical Magick: OR, THE WONDERS That may be Performed by Mechanical Geometry.

 CONCERNINGMechanical $\left\{\begin{array}{l}\text { Powers. } \\ \text { Motions. }\end{array}\right.$
Being one of the mot Eafre, Pleafant, Uletiul, (and yet mon neglected) past if MATHEMATICKS.
Not before treated of in this Language.
By 7. Wilkins, late La Br of Cbefler.
 the fourth edition.
$2 \frac{1}{2}$
LONDON: 2
Printed for sic. MEADwitt, near the Oxford-Arms lin, IPararict-Lane. 1691.

To His Highness the Prince Elector Palatine.

May it please Your Highness!

IShould not thus have prefented my Diverfions, mere I one mag fundy and bufinels; bus that where all is due; a mas may not july aitbold any parr.

This following $D i f$ conure spas compered Some years fence at my fare boors in she Unizerfisy, The Subjects of it is mixed Mathematics ; ribich I did rberatirer at fuchs times make choice of, as being for the pleafure of it, mure proper for reccession; and for aloe facility, no arc friable to my abilities and lei/ure.

I Gown not, Sir, have berm ambitions of any \int_{0} Great (I could not of any Better) Patronage, had not my relation both engiugea and emboliened me so this Dedication.

They shes know your Highnefs, ham great an incouringer pow are, sud bay, this

$$
\text { AK } 3
$$

The Epirtie.
: Judge in all kind of ingenious Arts and Literature muff med acknowledg your preffures and lon condition so be none of the leaf intfoluefs (amon got thole many other) under which the Commonnvealsh of Learning does now suffer.

Is would in many respects much conduce to the general advancement of religion and learning, if she reformed Churches, in whole cause and defence your family hath fo deeply suffered, were but effectually mindful of their engagements so it. And partsenlarly, if ibcfeprcfent unhappy differences of ibis Nation did not occafion too much forgesfulnefs of their farmer veal and profefions for the vindicating of your family, and the reltoring of your Hughefs; she bafring and accomplifbwent of whish, together with the intresfe of all heavenly bleflings upon your HighBels, fall be the hearty daily prayer of

Your Highness
Mont humble and moll devoted Servant and Chaplain, JOHN WILKINS.

TO. THE

R E A D ER.

IT is relared of Heraclitus, that when his Scholars had found him in a Tradefman's fhop, whither they were ahamed to enter, He told them, Quod neque tali locodii defunt immortales, that the gods were as well converfanc in fuch places as in others; intimating thar a divine power and wifdome might be difcerned even in thofe common Arts, which are fo much defpifed. And though the manual exercife and practife of them be efteemal ignoble, yet the ftudy of their general caufes and principles cannot be prejudicial to any other (tho the moft facred) profeflion.

It hath been my ufual cuftom in the courfe of my other ftudies, to propofe divers Mathemarical or PhilofoA 4 phical

To the Reader.

phical inquiries, for the recreation of my leifurc-hours; and as I could gather fatisfaction, to compofe them to fome form and merhod.

Some of thefe have been formerly publifhed, and I have now ventured forth this difcourle; wherein befides the great delight and pleafure (which every rational Reader muft necels find in fuch notions as carry with them theirown evidence and demonftration) there is allo much real bemefit to be learned; particularly for fuch Gentlemen as employ their eltates in thofe chargeable adventures of Drawing, Mines, Cole-pits, ofr. who may from hence learn the chief grounds and nature of Engines, and thereby more calily avoid the delufions of any cheating Impoftor: And alfo for fuch comvmon Artificers, as are well skilled in the practife of thefe Arts, who may be much advantaged by the right underfanding of their grounds and Theory.
wike, No. Ramws hath oblerved, that the rea?tmen: a . Fon why Germany hath been fo cminent

To the Reader.

neat for Mechanical inventions, is because there have been publick textures of this kind inftitured amonght then, and throe not only in the learned languages, bur alto in the vulgar tongue, for the capacity of every unletter'd ingenious Artificer.

This whole Difourfe I call git enmatical \$inguich, because the art of Such Mechanical inventions as ape here chiefly infilled upon, larch been formarly fo styled; and in allusion montFrappe gar opinion, which doth commonly attribute all foch Arrange operations unto the power of Magick; For which reafon the Ancients did name this Art ©aupgтoтокпrx, or Mirandoram Eff. Etrix.

The frt book is called Archimedes, because te was the chiefelt in difcovering of Mechanical powers.

The fecond is titled by tim name of Daclalas, who is related to be one of the frt and mot famous among it the Ancients for his still in making faromorn. er I. li moving Engines: bork there being two of the frt Authors that

To the Reader.

that did reduce Mathematical principles unto Mechanical experiments.

Other difcourfes of this kind, are for the moft part large and voluminous, of grear price and hardly gotten; and befides, there are not any of them (that I know of) in our vulgar tongue, for which thefe Mechanical Arts of all other are moft proper. Thefe inconveniencies are here in fome meafure remedied, togecher with the addition (if I miftake not) of divers things very confiderable, and not infifted upon by others.

> THE

The Contents and Method of this following Difcourle.

Che fit 1500 .

Chap. 1. $\Gamma^{H E}$ excellency of the fe Arts. Why timers concealed b) the Ancients. 1 shoos that have created of them.

Ch. 2. Concerning the name of his Ant. Thus at may properly be filled Liberal. The Subject and nature of it.
Ch. 3. Of the firs Mechanical faculty, the Balance.

Ch. 4. Concerning shefscond Mechanick faculty, the Leaver.

Ch. ૬. How the natural motion of living creatures is conformable to there astifacial rales.
Cli.6. Concerning be Wheel.

Ch. 7.

The Contents．
Ch．7，Comerning the Pulley．
Ch．8．Of she Wedge．
Ch．9．Of the Screw．
Ch．rr．An inquiry info abe magnifceme ；－arles of she Ancients，which much ex－品 aw r laser times，macy／arm sain－ fer decay in chef．Mechanical arts，

Clown that the Ancicars bad dieqess motives and manas for fuchoraf max g－ nificent nooks，which we have not：

Chi 12．Concerning the force of store Mc－ chance faculices；particularly，dike Bal－ lance and Leaver．How they may be contrived to move the whole worlds or any officer conceivable weight．

Ch 3 3．Of she Wheel，by multiplications of which，if is cafe so move any imago－ noble might．

Ch．14．Concerning ate infiritrefreugth of Wheels，Pulley＇s，and Screws； shat

The Contents.

that is is pofible by the moltiplication of ibefesto pall ap an Oak by the roots mith absair, lift it up with a firast; or Glow it up wish omes breath, or to perform she greateft labour muth the keaft power.

Ch. 1 . Concerning she proportion of flownefs and fwiftmefs in Mechawicsl motions.

Ch. 16. That it is poffible to comerive fact ans arrificial motion as fball be of: Rownefs proportiomable to the fivifterefs of the beavens.

Ch. 17. Of fivifimefs, how it may be imcreafed so any kind of proportion. Come cerning the greas force of A rclimedes his Engzes. Of she Ballifta.

Ch. 18. Concerning she Catapuitx, or Enginesfor Arrours.

Ch. 1g. A comparifon betmixt thefe ancieas Engines, and she Gus-ponder inglywnents noss in whe.

Ch. 20.

The Contents:

Ch. 20. That is is poffible to contrive fuchs an artificial motion, as may be equally Swift with the fappofed motion of the heavens.

The Second 2600 .

Ch. 1.7 HE divers kinds of Auto Mills. of the contrivance of feveral motions by ratified air. A brief digrefian concerning Wind-guns.

Ch. 2. Of a failing Chariot, shat may without hordes be driven on the land by the wind, as flips are on the fen.

Ch. 3. Concerning the fixed Automate, Clocks, Spheres reprefenting the bedvenly motions. The Several excelledties that are molt commendable in foch kind of contrivances.

Ch. 4. Of the movable and gradient Automate, reprefesting she motion of living creatures, various founds, of lids, or beafls, and forme of them arsichlatr.

The Contents.

Ch. 5. Concerning the poffibility of framing ap drkfor Submarine Navigatioms. The Difficulties and Conversion. css of fuck a contrivance.

Ch. 6. Of the volant Automara; Archytas his Dove, and R cgiomontanus his Eagle. The poffibifity and great wefulnefs of fuck imverisioms.

Ch. 7. Concerning the Art of faring. The feveral mays whereby this hail been, or may be attempted.

Ch. 8. A refolution of the trio chief dipfaculties shat Sem to opp: F s she polfibilist of a firing Cbiariop.

Ch. 9. Of aperpet wal motion. The fecesing facility and real disfinwtry of any Such contrivance. The Several ways whereby it hath, been attempted, parsicklarly by Cihymiftry.

Ch. 10. Of fubterrancous Lamps, divers bifiorical 'relations concerning their daration for many hundred years soether. Ch. 11 .

The Contents.
Ch. II Several opinions comectring the mature and realon of thefe perperwal Lasmps.

Chap. 12. The moft protisble conjeafure how thefe Lames were fras med.

Ch. 13. Concerming feveral atrempits of contriving a perpetual motion by magmesical virtucs.

Chap. 14. The fceming probabilit of efferting a consimual motion by folid weights in a bollow mbel or Sptere.

Ch. 15 . Of comapofing a perpetual motion by fiwid neighrs. Concerning Archimedes bis water-forew. Thegrent probabilisy of accospplithing this suguiry by she belp of shas, wirh the falliblenefs of it upon exparintins.

ARCHE

ARCHIMEDES:

or,

Mechanical Powers.

Che fitul 2 bow

C A P. I.

The Excellency of thefe Arts. Why zhey were conctaled by the Axcients. The Authors slixs bave treated of thicm.

AL L thofe various Sudies about which the fons of meri do bufic their endeavours. may be generally comprifed under thefe three kinds:
$\{$ Divine.
Natural.
<Arrificial.

To the firft of rhefe, is reducible, not only the fperulation of Theological Truths, but alfo the prattice of thofe Virtues which may advantage our minds in the enquiry after their proper happinel's. And chefe Arts alone may rruly be ftiled Liberal, Rua virtusef, (laith the Divine Stoick) which let a man at liberty from his lufts and palfions,

To the Second, may be referred all that knowledge which concerns the frame of this great Luiverfe, or the ulial courle of Providence in the government of thefe crated things.

To the Laft, do belong all thore Inventions, whereby Nature is any way quickned or advanced in her defects: Thefe Artilicial Experiments being (as in were) but formany fitays, whereby men do naturally atembe to reftore themielves from the finft general curfe inflicted upon their Labours.

This following Difcourfe does properly appertain to this latter kind.

Now Art may be faid either to imitate Nature, as in Limning and PiEtures ; or to belp Nature, as in Medicine; or to overcome and aduance Nature, as in thefe Mechanical Difciplines, which in this refpett are by fo much to te preferred before the other, by how much cheir and and power is more excellent. Nor are they therefore, to be efteemed lefs noble, becaufe more prattical, fince our beft and moft divine knowledge is intended for action; and thofe may juftly be counted barren ftudies, which do not conduce to Practice as their proper end.

But to aprare we to contemn every thing which is common, that the ancient Philofophers efteemed it 2 great part of Wif om, to conceal their Learning from vulgar apprehenfion or ufe, therehy the berter to maintain ir in iss duc honour and refpect. And therefore did they generally vail all their Arts and Sciences under luch myftical expreffions, as might excire the peoples wonder

Macrobius Somn. Scip. I, I. E.

Arrlimedes; or, Lib.I. and reverence, fearing left a more eafie and tamiliar difcovery, might expofe thers to contempt. Sic ipfa mpleria fabviayum cuniculis opcriantar, fummatibus tantum viris, fupiemia intel prete, veriarcani conjciis; Contenti fint relequi, ad vencrationcm, figurss defendentibus is vilitate fierethm, laith a Platonick.

Hence was it, that the ancient Mathematicians did place all their learning in abftracted Ipeculations, refuling to debafe the principles of that noble Profeflion unto Mechanical Experiments. Infomuch, that thofe very Authors amongt them, who were moft eminent for their inventions of chis kind, and were willing by their own practice, to manifelt unto the world thofe Árificial wonders that might be wrought by chele Arts, as Dedatus. Archytas, Archemedes, \&c. were notwithftanding fo much infeeted with this blind fupertition, as not to leave any thing in writing concerning the grounds and manner of thele operations.

Cap. 1. Mechanical Powers.
Quintilian freaking to this purrpole of Afrchonedes, faith thus: QumQuint. I. 1.c. 10. wis sanctum tamgne fingalarens Geometrice ufum, Alrchime as, faneuluribus exemplis, $\dot{\sim}$ admiranis operibus offersrit, properer que non humane (ed divine Scicnitic lauder for adepios, haft tame: in ola Platoons perfusfone, nee wham Asch.anicans liter.ans prodere voluit.

By which means, PoIterity hath unhappily loft, not only the benefit of thole particular difcoverios, but alto the proficiency of thole Ares in general. lir when once the learned men did forbid the reducing of them to particular ute and vulgar experiment, others did thereupon refule thefe itudies themfelves, as being but empty and utclels fpeculatiens. Whence it came to pals, that the Science of Geometry was fo uni- po verfally neglected, receiving little or $\mathbf{S r}$. no addition for many hundred years together.

Amongst theft Ancients, the $:$ vine Plato is observed to be on the greatest ticklers for chis opinion, feverely dehorting all his followers from proftituting Mathematical Principles, unto common apprehenfion or pratice. Like the enPlin. Nat. vious Emperour Tibcrius, who is rel.36. 6.26. ported to have killed an Artificer for making glafs malleable, fearing left thercby the price of Actals mighr be debafed. So he, in his fuperfition to Philofophy, would rather chule to deprive the world of allithofe ufeful and excellent lnventions which might be thence contrived, than to expofe that Profeffion unto the contempt of the ignorant vulgar.
Arit.
Quaft Mectan

Bur his Scholar Arilotle, (as in many other particulars, fo likewife in this) did juftly oppole him, and became himfelf one of the firf Authors chat hath writ any methodi. cal Difcourfe concerning thefe Arts; chufing rather a certain and general benefit, before the liazard that might accrue from the vain and groundlefs diffeffects of fome ignorant perfors. Being fo far from cfteeming Geometry diflonoured by the applicatio

Cap. 1. Meckanical Powers.

on of it to Mechanical practifes, that he rather thought it to be thereby adorned as with curious variety, and ro be exalted unto its naturalend. And whereas the Mathematicians of thofe former ages, did polfels all their Learning, as covetous men do their Wealth, only in chought and notion; the judicious Arifloste, , like a wife Steward, did lay it qut to particular ule and inlprovemene, righty preferring the reality and fubitance of pub. lick benefit, before the hadows of fome retired fpeculation, or vulgar opinion.

Since him, there have been divers other Authors, who have been eminent for their Writings of this nature. Such were Hero Alexandrinus, Hero Mechanicus, Papprs Alexandrsnus, Procless Mathematicus, "ritruvisus, Guidus Ubaldes, Hearicus Monantbolieu, Galitere, Guevars, Merfennus, Bittinus, Orc. Befides many others, that have treared largely of Teveral En. gines, as Auguftime Ramsilli, Vittorto Zoncha, Jacobas Br-fonius, /'egetims, Lipfrus.

$$
\text { B } 4
$$

Moft

Archinnedes; or, Lib.I.
Moft of which Authors I have perufed, and thall willingly acknowledge my felf a debtor to them for many things in this following Difcourfe.

C A P. II.
Conecrning she Name of this Art. That it maay properly he fyled Liveral. The fubject and noture of it.

Lyptius Polyorces. 1. I. Dislog. 3. Thatis: for fuldfi ab furd Etymolefy 2 wo pufas by
Sene, Onia inrelletus in dismcp chafur, ats if shesfarts dijponfi. surcenai ar sultrenti she Under. fimading.
T He word Mectusnick is thought àpetp, multum an afcendere, pertingere: avetp, multwin afcemdere, pertingere:
intimatnig the efficacy and force of fuch Inventions. Or elfe wig $^{\prime} \mu \dot{n} \chi^{a i-}$ vav (faith Esflathius) quia biflecre mon finit, becaufe thelè Arts are fo full of pleafant variety, that they admit nox eicher of floth or wearinels.
According to ordinary fignification, the word is ufed in oppofition to the Liberal Arss; whereas in propriety of fepech thofe employments alone may be ftyled Illiberal, which sequire only fome bodily exercife, as Manufactures, Trades,\&c. And on the con:
contrary, that difcipline which difcovers the general caules, effetts, and properties of things, may truly be eItcemed as a /pectes of Philofoplyy.

But here it hoould be noted, that this A it is ufually diftinguifhed into a twofold kiod:

> 1. Rational.
> 2. Cheirurgical.

The Rational is that which treats of thofe Principles and Furdamental Notions, which may concern thefe Mechanical practifes.

The Cbeirurgisal, or dramual, doth refer to the making of thefe Inftruments, and the excrcifing of fuch particular Experiments. As in the works of Architedure, lortifications, and the like.

The firlt of thefe, is the fubject of this Difcourfe, and may properly be ftiled Liberal, as jultly delerving the profecution of an ingenuous mind. For if we conffder it according to its birth and original, we fhall find ir to fpring from honourableParentage, being eroduced by Geometry on the one the other. If according to its ufe and benefit, we may then dificern, that to this Should be referred all thole Arrs and Profeffions fo necelfary for humane fooicry, whereby Nature is not only direfted in her ufual courfe, but fometimes alfo commanded againft her own law. The particulars that concern Architetture, Navigation, Husbandry, Military aftairs, \&c. are moft of them reducible to this Art, both for their invertion and ule.

Thole other dilciplines of Logick, Rhetorick, \&c. do not more prorect and adorn the mind. than thefe Meehanical powers do the body.

And thereforeare they well worthy to be entertained with greater induftry and refpect, than they commonly meet with in thele times; wherein there be very many that pretend to be Malters in all the Liberal Arts, who (carce underttand any thing in thefe particulars.

The fubject of this Art is concerning the heavinefs of feveral bodies,

Cap. 2. Mechanical Powers.
or the proportion that is required betwixt any weight, in relation to the power which may be able to move it. And fo ic refers likewife to violent and artificial motion, as Philofophy doth to that which is natural.

The proper end for which this Art is intended, is to teach how by underftanding the true difference betwixt the W^{\prime} cightr and the Porver, a man may add fuch a fitting fupplement to the frength of the Power, that it Thall be able to move any conceivable Weight, though it fhould never fo much exceed that force which the Power is naturally endowed with.
The Art ir felf may be thus defiribed to be a Marhematical Difcipline, which by the help of Geometrical Principles, do teach to concrive feveral Weights and Powers, unto any kind either of motion or reft, according as the Artificer fhall decermine.

If it be doubted how this may be efteemed a fpeies of Mathematicks, whenas it treats of Weights, and not

Dy. Ri-
prat. in lib. Archimed.de centro gravitatis. there are two particulars confiderable. 1. Mathematukes in iss latitude is ufually divided into pare and mixed: And though the pwre do handle only affratit grantoty in the general, as Ceametry, Aruthonetick; yet that which is miveld, doth confider the quantity of Come particular determinate fubject. So A/fromomy handles the quantity of Heavenly motions, Mufick of founds, and Meshanicks of weiglits and powers.
2. Heavinefs or Weight is not here confictered, as being fuch a natural quality, whereby condenled bodies do of themfelves tred downmards; but rathor as being an affection, whereby they may be ineafured. And in this fenfe Ariflotle himfell' refers is amongt Metaph. 1. the other fpecres of quantıt, as having 50. 3. the fame proper ellence, which is to be compounded of integral parts. So a pound doth confift of ounces, drams, fruples. Whence it is evident, that there is not any fuch repugnancy in the fobject of thi. Art, as may hinder it from being a true fpecies of Mather maticks.

> Caf. 3. Mechnuical Powers.
> C A P. III.
> of the firf Mecbanical Facully, the Batlance.

THE Mechanical Faculties, by which the Experiments of this nature mult be contrived, are ufually reckoned to be thele fix:

1. Libra.
2. Vectis.
3. Axis in

Peritrochio.
4. Trochlea.
5. Cumeus.
6. Cobhlea.

1. The Ballance.
2. The Leaver.
3. The Wheel.
4. The Pulci.
5. The Wedg.
6. The Scren:

Unto fome of which, the force of all Mechanical Inventions mult neceffailly be reduced. I flall rpeak of them feverally, and in this order.

Firft concerning the Ballance ; this and the Leaver are ufually confounded cogether, as being but one faculty, becaufe the general grounds and proportions of cither force is fo exactly the fame. But for better diftinetion, and more 1 hall treat of them feverally.

The frt invention of the Ballance is commonly attributed to Affrea, who is therefore deified for the goddeft of Juftice ; and that Inftrument it elf advanced among the Coelctial figns.

The particulars concerning it, are fo commonly known, and of fuch eafic experiment, that they will not need any large explication. The chief end and purpose of it, is for the diItination of feveral ponderofities; For the underftanding of which, we mut note, that if che length of the fides in the Ballance, and the weights at the ends of them, be both mutually equal, then the Beam will be in a horizontal fituation. But on the contrary, if either the weights alone be equal, and not their dittances, or the diftances alone, and not the weights, then the Beam will accordingly decline.

As in this following diagram.

Suppole an cqual weight at C, unto that at B, (which points are both equally diftant from the center A,) it is evident that then the beam $B F$, will hang horizoncally. But if the weight fuppofed at C, be unequal to that at B, or if there be an equal weight at $D E$, or any of the other unequal diftances; the Beam muft then neceffarily deciine.

With this kind of Ballance, it is ufual by the help only of one weight, to meafure fundry different Cardan, gravities, whether more or lefs than Subril.i.i. that by which they are meafured. As by the example here defcribed, a man may with one pound alone, weigh any other body within ten pounds, becaule the heavinels of any weight doth doth increafe proportionably to its diftance from the Center. Thus one pound at D, will equiponderate unto two pounds at B, becaufe the diltance $A D$, is double unto $A B$. And for the fame reafon, one pound at E, will cquiponderate to threc pounds at B; and one pound at F, unto esen at B, becaufe there is ftill the fame difproportion betwixt their leveral diftances

This kind of Ballance is ufually

Mechun. 6. 11 .

Prow. 11.1. c. 16. 11 . 464649. 20. 10, 23. Papm CoL lef. Me therol. 8. ftyled Romana, fratire. It feems to be of ancient ule, and is mentioned by Ariforle under the name of painary.

Hence it is eafie to apprehend, how that falle Ballance maybe compofed, fo often condemned by the Wifeman, as being an abomination to the Lord. If the fides of the Beam be not eiqually divided, as fuppofe one have io parts, and theother in, then any two weighes that differ according to this proportion, (the heavier being placed on the fhorter fide, and the lighter on the longer) will equiponderate. And yet both the feales being empry, Mall hang in aquilibrio,

Cap. 3. Mechanical Powers.
as if they were exactly jult and true, as in this defcription.

Suppole $A C$, to have in fuch parts, whereof $A B$, has but 10 , and yet both of them to be in themfelves of equal weight; it is cereain, that whether the ficales be empry, or whether in the feale D, we patis pound, and at E ro pound, yet both of them fhall equiponderate, becaule there is juft fuch a difproportion in the length of the lides; $A C$; being unto $A B$, as is to 10 .

The frequency of fuch cozenages in thefedayes, may be evident from common experiencc: and that they were ufed alfo in former ages, may C appear

Quxation. appear from Arifosle's teftimony conMechan corning the Merchants in lis time. Io r Budxus Hirsute tar prayers, Zygoftricat ides.

I Chron. - $3.2 y$.

Exod. jo. 3 Lev.a;:5 the remedying of fuck abuses the Ancents did appoint divers Officers flyled 乌ojosaitay, who were to overlook the common mealures.

So great care was there among it the Jews for the prefervation of commutative jultice from all abuse and iallification in this kind, that the publick standards and originals by which all other meafures were to be trued and allowed, were with much religion preferved in the Sanctuary, the care of them being committed to the lrictls and Levies, whore office it was to look unto all maimer of onesfares and $f i z$. Hence is that frequent cxpreffion, Afecordiny to abe Jacket of she Sanctuary; and that Law, All thy chtimatoms fall be according to the (h eke of we sathetuary; which doth nor refer to any weight or coin, difinch from, \because nd more than the vulgar, (as lome fondly conceive) but dosh only cline men in their dealing and traflique to make ute of fuck ju ft
jult meafures, as were agreeable unto the publick Itandards that were kept in the Santuary.

The manner how fuch deceitful ballances may be difcovered, is by changing the weights into each other fcale, and then the inequality will be manifert.

From the former grounds rightly apprehended, it is calie to conceive how a man may tind out the jult proportion of a weight, which in any point given, fhall equiponderate to fcveral weights given, hanging in feve. ral places of the Beam.

Some of thefe Ballances are made So exadt, (thode efpecially which the Refiners ule) as to be fenlibly turned with the eightieth pare of a grain: which (thongh it may feem very ftrange) is nothing to what * Capellus relates of one at Sedun, that would curn with the four hundredth part of a grain.

There are feveral contrivances to make ufe of thefe in meafuring the weight of blows, the force of powder,
 the ftrength offtrings, or other oblong fublancé, condenled air, the dilline proportion of feveral metals mixed togehler, the different gravity of divers bodics in the water, from what they have in the openair, with divers the like ingenious inquiries.

CAP.IV.

Comerning the Secuma'Mechasick facalty, she Learier.
$\neg H E$ fecond Mechanical faculty, is theLeaver; the firft invention ofit is ufually afcribed to Neprese, and reprefented by his Trident, which in
 Arillute Qu:f. Mechn. ${ }^{6} \mathrm{P} .4$. Alchim:cis,déz. quipenderanc. 1. i. prop :
Virtavis: Archie: $=$. L. ic.c.b. ehe Greck are both called by one name, and are not veity unlike in form, being bosh of them fomewhat broader at one end, than in the other parts.

There is one main principle conerning ir, which is (as it were) the very fium and epitone of this whole art. The meaning of it is thus expreffed by Ariflote, "ti un

is, as the weighic is to an equivalent power, fo is the diftance betwixt the weight and the center, unto the diflance betwixt the center and the power, and fo reciprocally. Or thus, the power that doth equiponderate with any weight, mult have the fame proportion unto it, as there is betwixt their feveral diftances from the center or fulciment: as in this folowing figure.

Where fuppofe the Leaver to be 'Tiis Anrepreferited by the length $A B$, the notectertil center or * prop ar the point C, the weight to be fuftained D, the power that doth uphold it E.

Now the meaning of the forefaid principle doth import thus much, that the power at E mult bear the

$$
\text { C } 3 \text { lame }
$$

719p.
Vitruyius proflio. Uhealdus Fulcimer: rum, Dan. Barturur, Scabullual fame proportion to the Weight D, as the diftance $C A$, doth to the other $C B$; which, becaule it is octuple in the prelent example, thereforc it will follow that one pound at B, or E, will equiponderate to eight pounds at A_{2} or D, as is exprefled in the figure. The ground of which maxine is this, becaule the point C, is fuppoled to be the center of gravity, on cither fide of which, the parts are of equal weight.

And this kind of proportion is not only to be oblerved when the power doth prefs donnuvards, (as in the former example) butalfo inthe other feecies of violent motion, as lifting, drawing, and the like. Thus if the prop or fulciment were fuppofed sobe at the extremity of the Leaver,

as in this Diagramat A, then the weight B, would require fuch a difference in the ftrengths or powers that did fuftain it, as there is betwixt the feveral diftances $A C$, and $B C$. For as the diltance $A B$, is unto $A C$, fo is the power at C, to the weight at B; that is, the power at A, mult be double to that at c, becaule the difance $B C$, is twice as much as $B A$. from whence it is cafic to conccive, how any burden carried berwixr ewo perfons, may be proportioned accord. ing to their differene itrengths. If the weight were imagined to hang at the number 2, then the power at C, would fultain bue two of thofe parts, whereof tiatat A, did uphold 16. If it be luppoled at the ligure (3) then the ftreiggdi at C, to that at A, would be butas three to filteen. But il it were fituated at the figure (9) then each of cheexcremities would participate of it alike, becaule that lxeing the middle, both the diftances ale equal. If at the number (12) then the flrength at t, is required to lie C. 4 double double unto that at A. and in the like manner are we to conceive of the other intermediate divifions.

Thus allo mult ic be, if we fuppole We power to be placed betwixe the fulciment and the weight, as in this example.

Where, as $A C$, is to $A B$, fo is the power at B, to the weight at C.

Hence Jikewife may we conceive the realon why it is fo much harder to carry any long lubitance, cither on the fhoulders, or in the hand, if it be held by either of the extremes, than if it be fuftained by the middle of it. The ftrength that mult equiponderate as the nearer end, fomecimes increafing the weight almoft double ro what it is in ir felf.

Imagine

Imagine the point A, to be the place wherc any long cuiblance (as fuppole a Pike) is fuftained, it is evident from the former principle, that the ftrength at B, (which makes it lyelevel) mult be cqual to all the length $A C$, which is almoft the whole Pike.

And as is is in the depreffing, or elevating, folikewile is it in the drawing of any weight, as a Coach, llow, or the like.

Let

Let the line $D E$, reprefent the Pole or Carriage on which the burden is fiultained, and the line $A C$, the crols barr ; ar each of its exeremities, there is a teveral lopring tree $G H$, and $I K$, to which either horfes or oxen may be faftned. Now becaule A, and C, are equally diffant from the middle B, therefore in this cafe the firengeh mult be equal on both fides; but if we fuppofe one of thefe foring trees to b efaftned unto the points E, or F, then the Atrength required to draw on that !ide, will be fomuch more, as the diftance $E B$, or $F H$, is lefs than that of $A B$; that is, either asthree or four, as $E B$, 10 So that the beaft faltned at A, will not draw fo much by a quarter, as the other at E, and buthall as much as one at F.

Whence ir is eafie to conceive how a husbandran (cmm insquales veniunt ad aratra jurenci) may proportion the labour of drawing according to the feveral ftrength of his Oxcn.

Unto this Mechanical faculty mould be reduced fundry orher inftruments in common ule. Thus the Uars, Stearn, Mafts, \&c. according to their force, whereby they give motion to the fhip, are to be conccived under this head.
Thus likewife for that engine, whereby Brewers and Dyers do commonly draw water, which Ariftotle calls nitν nger, and others Tellenon. This being the fame kind of Inftrument, by which Archimedes drew up the hips of Marcellus.

Arif. Mechan. es. 6.7.

VideCosvar. Commest.

MecharC. 29.

Pct. Crinirus, de honefta Difciplina 1. 19. c .2 salls it corruptly
Tellenan.

$$
C A P .
$$

САР. V.

How the nafural motion of livisg crettures is comformable to thefe art if. cial rules.

THE former Principle being already cxplained concerning artificial and dead motions, ic will not be altogether impertinent, if in the next place we apply it unvo thofe that are natural in living bodies, and examine whether thele allo are nac governed by the fime kind of proportions.

In all perfect living creatures, there is a twofold kind of motive inftruments.

1. Primary, the Mufcles.
2. Secondary, the Members.

The Mulcies are naturally fitted sobe inltruments of motion, by the manner of their frame and compofure ; confiting of flefh as their chief material, and befides of Nerves, Ligatures, Veins, Arteries, and $M=m$ brances.

Cap. 5. Mechanical Powers.
The Nerves ferve for the conveyance of the motive faculty from the brain. The L egatures for the frengthning of them, that they may not lag and languifh in their motions. The J'cins for their nourifhment. The Arteries for the fupplying of them with fipirit, and natural vigor. The akiomGrances for the comprehenfion or incloture of all thefe logether, and for the diftinction of one mufcle from another. There are belides divers fibre or hairy fubftances, which Na ture hath beltowed for the farther corroborating of their motions ; thefe being difperted throughevery mulcle. do fo joyn together in the end of then, as to make intire nervous bodies, which are called Tendones, almolt like the grifles. Now this (Faith Gakn) may fitly be compared tothe broader part of the Leaver, that is pusunder the weight, which, as it ought to be fo much the Atronger, by how much it is put to a greater force; fo likewile by this doth nature inable the mulcles and nerves

Do Placit Hippoc. ${ }^{6}$ Plitorl. 10.6. 10. for thole motions, which otherwife would be too difficult for them.

Whence it may evidently appear, that according to the opinion ot that eminent Phifician, thele natural motions are regulated by the like grounds with the artificial.
2. Thus allo is it in thofe fecondary influments of motion, the members: amongt which, the hand is irporsi fopensy, the inflrument of inftruments (as Galen Itylcs it) ; and as the foul of man doth bear in it the image of the divine wildom and providence, fo this part of the body feems in fome fort to reprefent the Omniputency of God, whillt it is able to pertorm fuch various and wonderful cifects by the help of this art. But now for iss own proper nacural frengeh, in the lifting any great weight, this is always proportioned according to its exrenfion fiom the body, being of leaft force when it is fully fretched out, or at armsend, (as we fay) becaule then the fhoulder joyar is as the center of that polture, being very remote, the weight of any thing it lyolds mult be accordingly augmented. Whercas the armbeing drawnin, the elbow-joynt doth then become its center, which will diminith the weight proportionably, as that p utr is nearer unto it than the other.

To chis purpofe alfo, there is another fubell probleme propoled by Arifotle, conceraing the poltures of firting and rifing up. The quare is this, Why a man cannot rife up from

Meclan. C 31 his feat, unlels he firf, either bend hisbody forward, or thrult his feet backward.

In the pofture of fitting, our legs are fuppofed to make a right angle with our thighs, and they with our backs, as in this figure.

Where ict $A B$ reprefent the back, $B C$ the elighs, $C D$ the legs. Now it is evident, that a man cannot rife from this pofture, uniels cither the back $A B_{2}$ do firlt incline unto F, to make an acute angle with the thighs $B C$; or elfe char the $\operatorname{legs} C D$, do in cline towards E, which may alfo make an acute angle with thethighs $B C$; or lafty, unlefi both of them dodecline to the points $G E Y$, where they may be included in the fame perpendicular.

For

Cap. 5. Mechanical Ponbers.'
For the refolution of which, the Philofophicr propoles thefe two par* ticulars.

1. A right angle (faith he) is akind of equality, and that being naturally the caufe of reft, muft needs tean impedimeat to the motion of riling.
2. Becaufe when either of the parts are brought into an acues angle, the head being removed over the feer, or chey under the head; in fuch a pofture the whole man is much nearer difipofed to the form of fanding, wherein all thefe parts are in one ftraight perpendicular line, than he is by the other of right angles; in which the back and legs are two parallels; or that of curning thefe Itraight anigles into obtuife, which would not make an erect pofture, but declining:

But neither of thefe particulars (as 1 conceive) do fully fatisfie the prefent quare, neitherdo the Conmentators, Mosantholiass; of Gurtura, better sefolve it. Racher fuppofe BC, tobe as a Veftis or Leaver, to:D watds wards the middle of which is the place of the fulcinent, $A B$, as the weight, cD , the power that is to raile it.

Now the body being firuare io this rectangular form, the weight $A B$, mutt needs be augmented proportionably to its diftance from the fulciment, which is about half the thighs; whercas if we fuppofe either the weight to be inclined unto F, or the power to E, or both of them to $G H$, then there is nothing rote lifrcud up, but the bare weight if felf, whi hin shis firtuation is not at all increafed wich any addition by diffance.

For inthelé conclufinns concerning the Leaver, we muft aluays imagine that point which is touched by a petpendicular from the cemer of gravity, to be one of the terms. So that the diverfe elevation or depreflion of the inftrumenr, will infer a great alteration in the weight is Felf, as may more clearly be difcerned by chis fol. lowing Diagram.

Whare

Cap. 5. Mechauical Powers?

Where A is fuppofed to be the place of the prop or fulciment; BCa Leaver which ttands horizontally, che power and the weighe belonging unto it, being equal both in chemfelves, and alfo in their diftances from the prop.

But now fuppofe this inftrument so be altered according to the fituation $D E$, then the weight D will be diminifhed, by fo much, as the perpendicular from its ceater of graz $\underset{D_{2}}{\text { viry }}$ or fulciment at A. And the power at E, will be fo much augmented, as the perrendiculas from its center K E does fall farther from the pointat A. Andlo on the contrary in that other fituation of the Leaver $F G$; whence it is cafie to conceive the tried reafon why the inclining of the body, on the putting back of the leg, hould fo much condure to the facility of rifing.

Bir Franc. Bacon's Nai.Hil. Ixp. 73).

From thefe grounds likewite may we underftand, why the knees fhould be molt weary in alcending, and the thighs in defoending; which is becaute the weight of the body doth bear molt upon the knece joints, in raifing it felf up. and moft upon the mufiles of the thighs, when it ftays ir felf in coming down.

There are divers other natural problems to this purpofe, which I forbear to recite. We do not fomich as go, orfit, or rife, without the ufe of this Mechanical Geometry.

Cap. 6. Mechauical Powers. 37

C A P. VI.

Concerning the Wheel.

T
HE third Mechanical faculty is commonly itiled axis in pry. trochio. It confilts of an axis or Cylinder, having a rundlu abour it, wherein there are taltned divers polkes, by which the whole miy be turn'd round, according to chis figure.

D 3 Where

Where BC does reprefent the Cy linder which is fuppoled to move upon a fimaller Axis at E, (this being all one in comparion to the ferenal proportions, as if it were a meer Mathernatical line) $L G$, is the rundie or wheel, $H E I K$, leveral lpokes or handles that are faltned in it; D, the place where the cord is faftned for the drawing or lifting up of any weight.

The force of this inftrument doth confilt in that difproportion of ditance, which there is betwixt the Senidiamerer of the Cylinder $A B$, and the Semidiameter of the rundle with the fookes $F A$. For let us conceive the line $F B$, to be as a Icaver, wherein A is the center or fulcinent, R the place of the weight, and F ot the power. Now is is evident from the former principles, that by how much the diftance $F A$, is greater than $A B$, by fo much lefs need the power be at F, in relpect of the weight at B. Suppofe $A B$ to be as the tenth part of $A F$, then the pow-

Cap. 6. Mechanical Powers.
er or ftrength which is but as a hundred pound at F, will be equal to a thouland pound at B.
For che clearer explication of this faculty, it will not be amifs toconfider the form of it, as it will appear, being more fully expoled to the view. As in this other Diagram.

Suppofe $A B$ for the Semidiamecer of the Axis or Cylinder, and $A=$ for the Semidiameter of the rundle, with the fpokes; then the power

D 4
at
at C, which will be able toluppart the weight D, matt buar the dame proportion unto is, as $A B$ doth to $A C$; fo that by how munh harcer the diftance $A B$ is, in comparifoy to the diflance $A C$, by to much lefs need the powict be at C, which may be abie to lupport the weighe D, langing at B.

And fo likewife is it for the other fpokes or handles EFGH, at cither of which, if we conceive any piower which thall move according to the fame circumference whercin thefe handlesare placed, then the itrength of this power will be all one, as if ic were at ς. But now fuppofing 2 dead weight hanging at any of them, (as at E_{2}) then the difproyortion will vary. The power being fo much lefs than that at c, by how much the line $A C$ is longer than $A I$. The weight k, being of the fame force at \mathcal{F}, as if is ware hung at I, in which point tle perpendicular of its gravity doth cut the Diameter.

The chicff advantage which this igi:

Cap. 6. Mechanical Popers.'
inftrument doth beftow, above that of the Leaver, doth confift in this particular. In a Leaver, the motion can be continued only for fo fhorta fpace, as may be anfwerable to that little diftance betwixt the fulciment and the weight : which is always by E_{9} much leffer, as the difproportion betwixt the weight and the power is greatar, and the morion ir felf more cafic. But now in this invention, that inconvenience is remedied; for by 2 frequent rotation of the axis, the weight may be moved for any height: or length, as occafion Thall require.

Unto this faculty may we refer the force of all thofe engines which confilt of wheels with reeth in them.

Hence allo may we difeern the reaSon why fundry inftruments in common ule, are framed after the like form with thefollowing figares.

All which are but feveral kinds of this third Mechanical faculty. In which the points $A B C$, do reprefint the places of the power, the fulciment, and the weight. The pou'cr being in the fame proportion unto the weight, as $B C$ is unto $B A$.

$$
C A^{\prime} P
$$

Cap. 7. Meclanical Powers.

C A P. VII.

Concersing the Pulley.

THat which is reckon'd for the fourth Faculty, is the Pulley: which is of fuch ordinary ufe, that it needs not any particular defeription. The chict parts of it are divers linte rundles, that are moveable abour their proper axes. Thefe are ulually di- arif. Nevided according to their feveral fitu- chen.c.19. ations, into the upper and lower. If an engine have two of thefe rundles ahove, and two below, it is ufually called sianoses. , if three rehamasoc, if many, to λ úarace:.

The lower Pulleys only do give force to the motion. If we fuppofea weight to hang upon any of the upper rundies, it will then require a perwer, that in it lelf hall be tully equal for the fuftainiag of it. i

The Diamiter $A C$, being as the beam of a ballance, of which B is the proper center. Now the parts A, and c, being equally diftane from this center, thercfore the power at E, mult be equal to the weight at D, it being all one as if the power and the weight were faftned by cwo feveral Itrings at the ends of the ballance $\boldsymbol{F} \mathrm{G}$.

Now all the upper Pulleys being of the fame nature, it muft neceffarily follow, that none of them do ia themfelves conduce to the eafing of the power, or lightning the weight, but poly for the greater convenitro

Cap. 7. Mechanical Powers.

my of the motion, the cords by this means being more eafily moved than otherwife they would.

But now fuppole the weight to be fultained above clue Pulley, as it is in all thole of the lower fort; and then she power which fupports it, need be but halfas much as the weight it leif.

Let $A C$, represent the Mameter of a lower Pulley, on whole center at B, the weight is faftned; buy end of the cord being toed to a hook at D. Now it isevident, that half the weight is fuftained at D, fo that there is but the other hall left to be fultained fuftained by the power at E. It being all one as if the weight were tyed unto the middle of the ballance $P G$, whofe ends were upheld by two feve. ral itrings, $F H$, and $G l$.
"And this fame fubduple proportion will fill remain, tho' we fluppofe an upper Pulley joyned to the lower, as in thefe two other figures.

Cap. 7. Mechanical Pospers.

Where the power at A, is equal io the weight at B : Now the weight at B, being but half the ponderofity $C_{\text {, }}$ therefore the power at A, notwishllanding the addition of the upper rundle, mult be equivalens to thalf the weight ; and as the upper Pulley alone doth not abace any thing of the weight, fo acither leing joined with the lower, and the fame fubduple difference berwixt the power and the wcight, which is cauled by the lower Pulley alone, doth fill remain unaitered, though there be an upper Pelley added unto it.

Now as one of thefe under Pulleys duth abate half of that heavinefs which the weight hath in it felf, and caulc the power to be in a fubduple proportion unto is; fo two of them do abate half of that which remains, and caufe a fubrquadruple proportion, betwixt the weight and the power; three of them a fublextuple, four a fuboctuple : and fo for five, or fix, or as many as hall be required, they willall of themdiminifh

Archinedes; or, Lib.I:

 thie weight according to this proporsion.Suppole the weight in it feff tobc $x 203$ pound, the applying unfo it one of thele lower Pulleys, will make it but as 600 , two of them as 300 , three of them as 1 so. dre.

But now, if we conceive the firf part of the fring to be faltened unto the lower Pulley, as in this other figureat P;

then

49

chen the power at A will be in a fub. triple proportion to the weight E, becaule the heavinefs would be then equally divided unto the three points of the lower Diameter $B C D$, each

E of

Archimedes; or, Lib. I.
of them fupporting a like thare of the burden. If unto this lower Pulley there were added another, then the powei would be unto the weight in a fubquintuple proportion. If a chird, a fubleptuple, and fo of the reft. For we mult sore, that the cords in this inftrument are as fo many powers,'and the ruadles as fo many leavers, or ballances.

Hence it is eafic to conceive, how she lliengthof the power may be proportioned according to any fuch degree, as flall be required; and how any weight given, may be moved by any power given.
'Tis not material to the force of this inftrument, whether the rundles of it be big or littlc, if they be made equal to one another in their feveral orders; but it is molt conveniant, that she upper fhould each of them increale as they are higher, and the other as they are lower. becaufe by this means the cords will be kepr from rangling

Thele Pulleys may be muleiplied

Cap. ${ }^{\text {i 7. Mechanical Powers: }}$
31 according to fandry different firtuations, nor only twhen they are fubordimace, as in the former examples, buit alfo when shey are placed collaterally. From the former grounds it is eafie to conerivea ladder; by which a man may pull himfelf up untoany theight; For the performance of this, thiere is required only an upper and a lower sundle:

E 2
$\dot{T} \boldsymbol{a}$

Archimedes; or, Lib. I To the uppermoft of thefeat A, there thould be faltned a fharp grapple or cramp of iron, which may be apt to cake hold of any place where it lighrs. This part being firt cart up and faltned, and the ftaff $D E$, at the nether end, being put berwixt the legs, fo that a man may fit upon the other $B C$, and take hold of the cord at F, is is evident that the weight of the perion at E, will be but equal to half fo much frength at F, lo that a man may cafily pull himelf up to the place required, by leaning but little more than half of his own weight on the ftring F. Or if the Pulleys be multi. plied, this experiment may then be wrought with lefs labour.

C A P. VIII.

Of the Wedgr.

> HE fift Mechanical faculty is the Wedge, which is a known infrument, commonly us'd in the clea-
> ving

Cap. 8. Mechanical Powers. ving of wood. The efficacy and great ftrengch of it may be refolved unto thefe two particulars:
I. The form of it.
2. The manoer whereby the power is imprefed uponit, which is by the force of blows.

1. The form of it reprefents (as it were) two Leavers.

8

Each fide $A D$, and $A E$, bcing one, the points $B C$, being inftead of feveral props or fulcinents; the weight to be moved at A, and the power that fhould move it, being applied to the top $D E$, by the force of fome Itroke or blow, as Arifosle hath explained the feveral parts of Me.lan. c. 8 . this faculty. But now, hecaufe this inftrument may be fo ufed, that che E 3 point point of it fhall nor touch the body to be moved, as is thefe other fio: gures:

Therefore Vbaldmath moth exactly applied the feveral parts of it according to this form, that the point A fhould be as che common fulciment, in which both the fides do mect, and (as it were) uphold one andither; the points B and 6 , reprefonting that. part of the Leavers whire the weight is placed.

It is a general rule, That the more* acuce the angles of thefe wedges are, by fo much more cafie. will their motion be; the force being more eafily imprefled, and the fpece whercinche bady is moved, being to much the lels.

Cap. 8. Mechanical Powers.
The fecond particular whereby this faculry hath ies lorce, is the monner whereby the power is imprelt upon ic, which is by a froke or blow; the efficacy of which doth much exceed any other ftrength. For though wé luppole a wedge being laid on a peice of timber, to be preffed down with dever fo great a weight ; nay, mough we fhpuld apply unto it the power of thiofe other Mechanical engines, the Pulley, Screw, \&ac. yet the effedt would be fcarceconfiderable, in comiarifon to that of a blow. The crue? reafon of which, is one of the greateft fubtilics in na. cure ; nor is is fully rendred by any of thofe who have underraken the refolution of it. Ariftrtce, Cardan, Mechan. and Scaliger, do gencrally afcribe it unto the Swiffnofs of that motion; Subrer.1.7. But there feems to he fomerhing 31 . more in the matter than fo; for otherwife it woult follow, that the quick Aroke of a light hammer, hould be of greater efficaicy, than any fofter and more gentle ftriking of a great E 4 nedge.
nedge. Or according to this, how thould it come to pals, that the force of an arrow or bullee difcharged near at hand (when the impreffion of that violence, whereby they are carried, is moft frefh, and fo in probability the motion at iss fwifteft) is yet notwithfranding, much lefs than it would be at 2 greater diftance? There is therefore further confiderable, the quality of that inftrument by which this motion is given, and alfo the conveniency of diftance through which it paites.

Unto this faculty is ufually reduced the force of files, laws, hatchets, \&c. which are, as it were, but fo many wedges faftned unto a Vectis or Leaver.

CAP. IX.

 of the SCREW. Hat which is ufually recited for culty, is the Screw, which is defribed whea kind of wedge that is multi-plied

Cap. 9. Mechanical Powers.
plied or continued by a helical revolotion about a Cylinder, receiving its motion not from any Itroke, but from a Vectis at one end of it. It is ufa. ally diftinguifhed into two feveral

Pappus. Collect. Anathemas, 46. 8. kinds : the male, which is meant in the former defcription; and the female, which is of a concave fuperficies.

The former is noted in the figure with the letter A, the other with B. Arifot le himfelf doth not fo much as mention this inftrument, which yet notwithstanding is of greater force and fubtilty, than any of the reft. It is chiefly applied to the Iqueezing or preffing of things down wards, wards, as in the Preffes for Printing, for wine, oyl, and extracting the juice from orther fruiss, in the performance of which,the frength ofone man may be of greatcr force, than the weight of a heavy mountain : It is likewife ufted for the elevating or lifting up of weighis.

The advanrage of this faculty above the reft, doth mainly confift in this: the other inftruments do require fo much ftrength for the fup. porting of the weight to be moved, as may be equal unro it, befides that 0 . ther fuper-added. power whereby it is out-weighed and moved; fo that in the operations by thefe, a man does always fpend thimfelf in a concinued labour.

Thus (for exaniple) a weight that is lifted up by a Wheel or Pullicy, will of it reff difcend, if there be not an equal power to furtain it. But now in the comtofure of Screw, this inconvenience is perfectly remedied ; for fo much force as is communicared unto chialactity, from the

Cap. 9. Mechanical Powers.
Power that is applied unto it; is fill retained by the very frame and riacure of the instrument ic fell; fence the motion of it cannot poffibly return, but from the very fame place where itfirt began. Whence it comes to $p^{f 0}$, that any weight lifted up, with the affiftane of this engine, may likewife be luftained bi it, without the help of any external power, and cannot again defend unto its former place, unless the handie of the Screw (where the motion firf began) be turned back: fo that all the itrength of the power, may be employed in the motion of the weight, and none front in the fuftaining of it.

The chic imconvericnce of thing inftrument is, that in a fhott fate it will be ferewed unto ins full length, and then it: camor be of and furthen ute for the concirmance of the morion, untelf it be returned wack, and undone again as at the firf. Sur this is usually remedied by another invention, commonly ftyled a perpeturd tual Screm, which hath the motion of a Wheel, and the force of a Screv, be ing both infinite.

For the compofure of which, inftead of the female, or concave fcrew, there muft be a little Wheel, with Come notches in it, equivalent to

It is wied in fome Watches. teeth, by which the orher may take hold of it, and curnit round, as is thefe orher figures.

This latcer engine docs fo far exceed all other conerivances to this purpole, that it may juftly feem a wonder why ir is not of as common ufe

Cap. 10. Mechanical Powers. ufe in thefe times and places, as any of the reft.

C A P. X.

An eqquiry into the mannjifcent works of che Ancients, which much excceding our later times, may feem to infer a decay in chefe Mechnosical Arts.
THus have I briefly tresed concerning the general principles of Mechanicks, together with the diftinet proportions betwixt the weight and the power in each feveral faculty of it; Whence it is eafie to conccive the truch and ground of thole famous ancient monuments, which feem almoft incredible to thefe following ages. And becaufe many of them recorded by Antiquity, were of fuch valt labour and magnifcence, and fo mightily difproportionable to humane Atrength, it Thall Dot therefore be impertinent unvo the purpofe I aim at, for co fpecific fome

62 Archimedes; or, LibsI of she molt remarkable amongt them; and to enquire into the means'and occafion upon which they were firft attempted.

Amongit the TEpiprizns, we read of divers Pyramids, of f_{0} vait a magritude, as sime is folf is the face of fo many hundred years bath not yet devoured. Herodotus meations one of them, erected by Cleopes an Kigypian King, wherein there was not any one fone lefs than 30 foot long, alt of them being fetched from Arabia. And not much after, the fame Author relates, how Amafis andther AEyptian, made himfelf a houte of onic entireftone, which was 21 cubits long,
flon. 1. 3^{6} 4.4. 12. 14 broad; and 8 cubits high. The fame Amaffs is reported to have made the fatue of a Sphinx, or ERyprian Cat, all of one fingle ftone, whole length was 143 foot, its height 62 foor, the compafs of this fanue's head containing O_{2} foor. in one of the Aegptian Temples confecrated phim. 43 . to Jupiter, there is related to be an sat. 5. Obelisk, confifting of 4 Smaragds

Cap. 10. Mechanical Powers. or Emeralds; the u hole is 40 cubits high, 4 cubits broad at the hottom, and two at the top. Sefoffris the King of Egope, in a Tample at Memphis, dedicated to Vilcus, is reported to have erceted two ftarues, one for himfilf, the orher for his wite, both confifting of two feveral ftones, each of which were 30 cubirs high.

Amongt the Jews we read in facred Writ of Solonnon's Temple, which for irs ftate and magnificcoce might have been juftly reckioned amongit the other wanders of the world, whereia befides the great riches of the materials, there were works too of as great labour. Pillars of bralis 18 cubits high, and 12 cubits round; great and coftly tones for the foundation of ir; Fofipisus tells us, that fome of them were 40 cubits, others 45 cubirs long. And in the fame Chaprer he mentions the three famous Towers buile by Hirad, whercin every flone being of white marble, was 20 cubits long, 10 broad, and 5 high. And which was the greatedt wonder, the old wall it felf was fituated on a fteep rifing ground, and yet the hills uponit, on the tops of which thefeTowers were placed, were about 3 o cubits high, that 'tis fcarce imaginable by what frength fo many ftones of fuch great magnitude fhould be conveyed to fo high a place.
Pbin. ${ }_{3} 6$. C. 14. Pancirol. Deqror. 7r. 32.

Amongit the Grecians we read of the Ephefian Temple dedicated to Diana, wherein there were 127 columas, made of fo many feveral ftones, each of them 60 foor high, being all taken out of the quarries in Afis. 'Tis ftoricd alfo of the brazen Coloffus, or great Statue in the Inand of Rhodes, that it was 70 cu plen.1.34. bits high. The thumbs of it being fo big that no man could gralp one of them about with both this arms; when is ftood upright, a thip might have paffed berwixt the legs of it, with all its fails fully difplayed; being thrown down by an earth-quake, the brats of it did load 900 Cainels. Bur above all ancient defigns to this purpofe, shat would have been moft wonder-

Cap. 10. Mechinical Powers.

 tect did propound unto alkexam:ier, to out the Mountain Athos into the form of atatue, which in his righe hand fhould hold a Town capable of ren choufand men, and in his lefi a Ve:fel to receive all the water that flowed from the leveral fprings in the Mountain. But whether Alexssmer in his ambicion did fear that fuch an Idol hould have more honour than he himfelf, or whether in his good husbandry, he thought that fuch a Microcofne (if I may fo Ayle it) would have colt him alinoft as much as the conquering of this great world, or what ever elfe was the realon, he refufed to attemptit.Amongtt the Romsnr we read of a Suet. Ner. brazen Coloffus, made at the command and churges of Nero, which was 120 foot high; Martial calls it Siderees, or flarry

H:c ubi Sidere is proprius vintie affrs Coloffur. And it is foried of M. Cario, that he crented two Thestres fufficiF ently

Pancirol.
Diserd.
Tif. 19.
cntly capacious of p:ople, contrived movable upon certain hinges; Somesimes there were feveral plays and Hows in each of the:n, peither being any diffurbance so the other;and lometimesthey were boch eurned about, with the people in hem, and the ends meeting together, did nake a perfect: Amphitheafer: to that the foeitators which were in cither of them, might jojntly bihold the fame fectacles.

There were beflises at Rume fundry
D. T2. 3. Obelis's, maic of fo many intire Hones, fome of them to. fome 80 , ani others go cubits high. The chicl of them were brouglt ous of serpt, where they were dug out of divers quaries, and being wrought into form, vere aferward not withous incredible labour, and ininitu charges) conveyed unto Roni. In the year 1586 , there was ercated an old obelisk, which had been tiosmen!y dedicated unto the mesnory of Julus Cafar. It was rne folid fone being an Ophire or lind of fratted Marble. The height of it was roy foor, the brcadth of it 25

Cap. so. Mechanical Tubers.

at the bottom was 12 foot, at the top 8. Its whole weight is reckoned to be 956148 pounds, betides the heaviness of all thole inftruments that were unfed about it, which (as it is thought) could not amount to lets then 1042824 pounds. It was crankplaced at the charges of Pope Sixties the fifth, from the lett fade of the V tical, unto a more eminent place abour a hundred foot off, where now is ftands. The moving of this Obelisk is celebrated by the writings of above 56 feveral Authors, ((aitch Monassha (ives) all of them mentioning it, not without much wonder and praife.

Comxurrt.
in Afechan. Atrifc.I! Now if it Sem fo strange and glorioust, ant attempt to move this Obelisk for fo little a face, what then may we think of the carriage of ir out of Egypt, and divers other far greater works performed by Antiquity? This may Sem to infer, that thee Mechnical arts are now loft, and decayed among f the many other ruins of time; which yet norwirhflanding cannot be granted, without much ingrateF 2 rude tude to thoie learned men, whole labours in this kind we enjoy, and may juftly boalt of. And therelore for our beteer underltanding of thele particulars, it will not be amils to enquire both whr, and bow, fuch works hould be perform'dinthole former and rader ages, which are not, and (as it hould feem) cannot be cffetted in thefelater and more learned tines. In the examination of which, we flall find, that it is not the want of Art that difables us. for them, fince thefe Mechanical difcoverics are altogether as perfete, and, I think / much more exadt now, thandicy were heretofore; but it is, becaule we lave not cither the farae motives to attempt fuch works, or the lame mexns to effed them as the Ancients had.

CAP.

Cip. if. Mechanial Powers.

CAP. XI.

Thar the Ancienss had divers motives and means for fuch wifl magmidecens work, which we have wht.

THE motives Ly which they were excited to fuch magnificent ateem; ts, we may conceive to be chicely thrie.

$$
\left\{\begin{array}{l}
\text { Religion. } \\
\text { Poluc. } \\
\text { Anbrtion. }
\end{array}\right.
$$

1. Refigion. Hence was ir that moit of thefe ftately buildings were ielednded for fome facred ufe, being cither Temples or * Tombs, all of them dedicated to fome of their Deitics. It was an in-bred principle in unoie. ancient Heathen, char they could not chufe but meris very much by be. ing liberal in their outward Jervices. And therefore we read of $C r e f / 4 w$, that being overcome in a battel, and raken ly Corize, he did revile the Gods of in-

Hsraic:
f. 1. fratiend:, becaule they had no better cire of him, who had to frequently F 3 adored adored them with coflly oblations. And as they did conceive themfelves bound to part with their lives in defence of their Religion, fo likewific to employ their utmoft power and cltate, about any fuch defign which might promote or advance it. Whereas now, the gencrality of men, efpecially the wifeft fort amonglt them, are in chis refpett of another opinion, counting fuch great and immenfe labours to be at the beft but glorious vanities. The tempic of Sotomon indeed was to be a type, and therefore it was neceffary chat it fhould be fo extraordinarily magnificent, ocherwife perhaps a much cheaper ftru-- Cture might have been as commendaide and ferviccable.
2. Poftcy, that by this means they might find out imployment for the people, who of themfelves being not much civilized, might by idlencls quickly grow to fuch a rudenels and barbarifm, as notto be bounded within any laws of government. Again, pher 1.6. -. 18. by this means the ricics of the King- Trealiries, bur was always in mution, which could not but be a greas advantage and improvement to theCommonwealill. And perhaps tone of them feared, leit it they thould leave too much money unto their fuccefors, it mightr be an occation to infnare them in fuch idle and vain courles as would ruin their Kingdoms. Whereas inthele later ages none of all thele folitick incitements can be of any force, becaufe now there is inployment enough for all, and money little cnough for cvery one.
3. Ambution to be known unto poferity; and hence likewife arofe that incredible babour and care they beflowed to leave luch monumencs behind them, as might * contimue for e-

```
- Pul 40.
``` wer, and make them famous unto all \(=1\). after ages: This was the reafon of Absuoms Pillar lpoken of in Scrip. ture, so kicep his name in remembirance. dind doubrelel's this too was the end

2 Sam 18. 18. which many orhers of the Ancients bave auned at, in thofe (as they \(\mathrm{F}_{4}\) thoughr)

72
Arelinnedes; or ; Lib. I. thought) everlafting buildings.

But now chefe larer ages are much more detive and ftirring: fo cliat every ambitious fudin may find fo much tuufiuel's for the prefent, that he thall fearce have any feifure to trouble himfelf about the future:" And therefore in all thele relpuats, there is a geat dippoportion betwixp the incitiments of thofe former and thefe later (thes tmo fucin magnificent attempts.

Agnin, as they differ much in their murri:s unto chem, folikewife in the menns of etfecting them.

There was formerly more leffure ant opporzunity, both for the great men to undertake fuch works, and for the people to perfect them. I Inde paft ages were more quiet and peacenble, the Princes racher wanting imphomment, than being over-prolt with it, and therelore were willing to mate eroice of luch great defigns, abaue which to bulie themfolves: whereas now the werld is grown Now politick, and therefore more 1 trauble- troublefome, every great man having other private and necelfary bufinels about which to employ both this time ant means.' And ifo likewife for cle common people: whot then living more wildly, wiehout being confined to farticular trades and proleminem might be more eatily colleded: about fuch famous Employments; whereas now, it a Psince thave any oscafion for an Army, it is very: hard for him ro raife fo great a multitude, as were uldally imployed about chele magnifcent buildings. Wé read of 360000 men that were bulicd tor twenty years in making one of the Egyptian Pyramids. And Herodoturtels us ofico00000 men who were as long in building another of them. Abour the carriage of one ftone for \(\mathrm{Aman}_{\mathrm{s}}\) os, the diftance of tu'cnty dayjs journey, there was for three years together employed 2000 chefen men, Gevernours, belides many other under-labourers. 'Twas
 anzen, that thefe Pyramids were buile L.3.c.s. by Fofegt for Gianaries againft, the ycars years of famine." Others think that the brick made by the children of /fruet, was imployed abouc the framing of themiti becaufie we read that the Tower ofisube/did confift of brick or araficial (tone, Gen. 11. 3. Aad is thefe wure the labourers that were bufied about them, 'tis no wonder though they were of to valt a magnitude; for we read that the children ol I/fa:! at their coming our of \(E\) ans, were numbred to be lix hundred thoufand, and three chouland, and five hundred and rify men, Numat. -46. formany handfuls of cardh would almolt make a tnouncain, and therefore we may caflly believe that fo great a multitude in fo long a fpace as their bondage lafted,for above four hundred years, might well enough accomplills luch vaft deligrs.

In the building of Solonnon's Tempie, there wert chrceficore and ten thendand that bare burdens, and fourfore thouland hewers in the mountains, 1 Kimes 5.15.

The tiplejoan Temple was buile by

Cap. 11. Mecbanical Pomers. all Afir joyning together, the 127 pillars were made by fo many Kings according to their feveral fucceffions; the whole work being not finifhed under the [pace of Two hundred and fifeen years. Whereas the craniplacing of that Obelisk at Rome, by Stixtus the fifith, (Epoken of before) was done in forme few days by five or fix hundred men; and as the work was much lefs than many other recorded by Anriquity ; So de means by which it was wrought, was yet far leffs in this refpect than what is relared of them.
2. The abundance of wealth which was then ingrolfed in the poffeffion of fome few parcicular perions, being now diffuled amongft a far greater number. There is now a greater equality amongf mankind; and the flourilhing of Arts and Sciences hath fo flirred up the fparks of mens natural nobility, and made them of fuch active and induftrious fipiris, as to free shomielves in a great tncafure, from that lavery, which thole former and wilder wilder Nations werc fabjected unio: In building one of the Pyramids; there was expended for the maintenance of the labourers with Radifh and Onyons, no lefs than cighteen hundred talents, which is reetooned ta amount unto \(880 \%\) © Crowns, os th:reabuats. And confidering the cluapnefs of thefe things in thofe thinues' and places; to much money might go farther chan a fum tein times greiker could do in the maintenance ui se many nou:
In salaman's Temple we linow how the extraordinary riches of that King; the geacral foorifhing of the whole Stare; and the liberality of the people did ioindy concer to tle building of

Be bell.
Jud. J. 6. cap. 6. the Temple. Peinumum sbpie, of populi laxpisuc, majima decin comebatur, (taith Tof apornes). The Rboditn Cololfus is reported to have icolt three hundred rakentsthe malking, i. And fo were all thofe- ortier famous Monuments of proporionable expence.

Parcrallus fpeaking of chore Theatres chat were eretted 2 : the charges

\title{
Cap. 11: Michamical Powers. JF
} of fome privata Rimann Citizens, laith thus, Noffo, hec foemle vel. Rexe fith Depers. Tit. 14 buberct quod wref a dificia ejufnead' yrigendo; and a jitfle after upon chic dike occalion, Res nuthoromile mirasulo/t, que mpfris cemporilise vixa potemtilimo aliquorege polfs exbibirr.
3. Add unto the two formericosifiderations that exaft.tere and indefatigable indafry which they beltowed in the raifing of thofe Atructures: Thele being the chief and only defigns on which many of them did employ all their beft thoughes and usmolt endeavours. Cleuprs an Exprean King is reported to have been fo defirous to finigh one of the Pyramids, that having fixent all about it he was worth, or could porfibly procure, he was forced as lalt to prontitute his own daughter for necellary maintenance. And we read of Ramifes another King of Egypt, how that le was lo careful to ereet anObelisk, aboutwhich he had

Mlin. I. 36
c. 9. cmployed 20000 men, that when be feared left through the negligence of the arcificers, or whalipets of the engine, gine, the ftone might tall and breale, he tyed his own fon to the top of it, that to the care of his fafery might make the workmen moro tircumfeet in their bulinefs. And what frange matters may be effeeted by the meer diligence and labour of great multitudes, we may cafily difcern from the wild Indians, who having nor the art or advantage of Engines, did yet by their unwearied indultry remove ftones of an incredible greatnefs. Acofa arelates,

Hiftor.
Ind. 1.6. c. 14 that he himfilf meafured one at Tis. rothaco. which was thirty eight foot long, cighteen broad, and fix chick; and he aftirms, that in their ftatelieft Edifices, there were many other of much valter magnirude.

From all which confiderations it may appear, That the ftrangenels of sholte ancient monuments above any. that are now effected, does not nece:farily infer any defect of Art in thele larer Ages. And I conceive, it were às calie to demontrate the Mechanical Arts in thele times to be fo far beyond the knowledge of former

\section*{Cap. 12. Medanical Pobers.}
ages, that had we biot the fame means as the Ancients had, we mighteffect far greacer matters than any they attempted, and that 100 in a fhorter fpace, and with leff labour.

\section*{C A P. XII.}

Concerning she force of the Mrebianick facaltersparricalerly sbe B t linnce axd Leaver. Hiw they may be contrived \(s\) mave the abole world, or any other conceivable weight.

A
LL thefe magnificent works of the Ancients before fpecified, are fcarce confiderable in refpect of Art, if we compare them with the famous fpecches and alts of Arehimeder: Of whom it is reported, that he was frequently wont to lay, how that he could move, Datmm pondus cumm dara potempiat, the greareft conceivable weighr, with the leaft conceivible rower : and that it he did but know where to ftand and faften hisinfirument, he could move the world, all this grear Globe of fea ant , , fond; which promifer, though they wicteraltogether above the vulgar apprchenion. or bellef, yet becaule his aits warc. fomewhat anfiverable thereunto, therefore the King of Syrecufe did enact a law whereby every man was bound to believe what ever drcinumeds would aflirm.
"ris eafie to demonftrate the Geometrical truth of thofe ftrange affertions, by examining them according to each of the forenamed Mectisnmick faculties, every one of which is of infinite power.

To begis with the ewo firft of them, the Ballance and the Leaver, (which I. here joyn together, becaute the propertions of both are wholly alike) 'cis cerrain, though there hould be the greatelt imaginable weight, and the lead timaginable power, (luppofe the whole world, and the ftrengthof o:c mann or infane) yet if we conceive the fame dilproportion betwixt theit \(f=\) veral diftanges in che fiprmer faculcies from the fulcimen or center of gravity,

Cap. 12. Mechanical Powers.' vity, they would both equiponderate: And if the diftanceof the power from the center, in comparilon to the diflance of the weight, were but any thing more than the heavinels of the weight is in refpect of the power, it may then be evident from the former principles, that the power would be of greater force than the weight, and confequently able to move it.

Thus if we fuppofe this great globe at \(A\), so \(G\) con- pounds, allowing a hundred pound for Satic. 1.3 cach cubical foot in it, (as Stevinius pmip. 10. hath calculated) yet a man or child at \(D\), whofe Atrengeh perhaps is bue equivalent to one hundred, or ten pounds weight, may be able to outweigh and move it, if there be but a lirtle greater difiproportion betwixt the two diftances \(C D\). and \(C B\), than there is betwixt the heavinefs of the weight, and the flrength of the pow. cr ; that is, if the diftance \(C D\), unto the other diftance \(C B\), be any thing more than 2400000000000000000000000 unto 100 or 10 , every ordinary inflrument doth include all thefe parts really, though not fenfibly diltin. guifhed.

Ullader this latter faculty I did before mention that engine by which

Lipfus Polincet. 1. \&. Dis3og. 6. Archinedes drew up the Reman Ships at the fiege of Syracufe. This is ufually fyled Tollenon, being of the fame form with that which is commonly ufed by Brewers and Dyers, for the drawing of water. It confifts of two
pofts, the one fiftned perpendicularly in the ground, the other being jointed on crofs to the top of it. At the end he faftned a ftrong hook or grapple of iron, which being let over the Wall, to the River, he would thereby take hold of the Ships, asthey paffed under, and afterwards by applying Come weight, or perhaps the force of Screws to the other end, he would thercby lify them into the open air. where having fwinged them up and down till he had fhaken out the men and goods that were in them, he would then dafh the Veffels againft the rocks, or drown them in their fud cn fall : infomuch that Marcellus, the Romav General, was wone to fay,
 Pluarel in bis \(L f\) f. Apxuńsiv, That Archimedes made ule of his Ships, inftead of Buckets, to draw water with.

This faculty will be of the fame force, not only when it is continued in one, but alfo when it is multiplied in divers inftruments, as may be conceived in this other form, which I do not mention as if it could be ferviceable for any motion (fince the fpace by which the weight would be moved, will be fo little as not to fall under fenfic) but only for the better explication of this Mecbanick principle, and for the right underftanding of that force arifing from multiplication in the other faculties, which doall depend upon this. The Wheel, and Pulley, and Screw, being but as fo many Leavers of a circular form and motion, whofe firength may therefore be continued to a greater (pace.

Imagine the weight \(A\) to be an thundred thouland pounds, and the diftance of that point, whescin every Leaver touches either the weight or one another, from the point where they touch the prop, to be but one fuch

\title{
Cap. 12. Mecbanical Powers.
}
fuch part, whereof the remainder conrains ten, then according to the former grounds \(10000 \mathrm{ar} B\), willequiponderate to \(A\), which is 100000 , lo that the fecond Leaver hath bus 10000 pounds to move. Now becaufe this oblerves the fame proporcions with the other in the diftarres of its leveral points, therefore 1000 pounds at \(c\), will be of equal weight to the former. And the weight at \(C\), being but as a thoufand pound, that which is but as a hundred at \(D\), will be anfiverable unto it; and fo ftill in the fame proportion, that which is but roat \(E\), will be equal to 100 at \(D\); and thar which is but one pound at \(F\), will alfo be equal to teri ar \(E\). Whence'tic is manifef, that I pound at \(F\), is equal to 100000 at \(d_{i}\) and the weight muft always be diminithed in the fame proportion as ten to one, becaufe in the multiplication of thefe Leavers, the diftance of the point, where the inftrument touches the weight, from that where it touches the prop, is but as one fuch G 3 part
part whercof the remainder contains cen. But now if we imagine ic ro be as the thoulandth part, then mult the weight be diminilh'd according to this proportion; and then in che lame mulciplicacion of Leavers, \(l\), will be equal to \(10030: 0000000050\) pounde; lo that though we fuppofe the weight to. be neyer lo heavy, yet ley the difproportion of diftances be greater, or the. Leavers more, and any little power: may moveit.

\section*{C A P. XIlL.}

Of she Whecel, Uy malisplication of whats is is eafle to move any amuginable purghts,

THE Wheclor asis in peritrochio, was before demonitrated ro be. of equivalent force with the former faculties. If we conceive the fanc ditierence betwixp the Semidiameter of the wheels or fpokes \(A C\), and the Semidiameter of the axis \(A B\), as there parfa, sp. .G. f. \({ }^{3 \mathrm{~B}}\). is betwixt the weight of the world, and

\title{
C2p. 13. Mechanical Powers.
}
and the Ifrength of a man, it may then be evident, chat this Itrcingth of one man,by the helpof fuch an inttrumens, will equiponderate to the weight of the whole world. And if the Semidiameter of the whecl \(A C\), be but any thing more in relpect of the Semidiameter of the axis \(A B\), then the weight of che world fuppoled at \(D\), is in compatifon to the ftrengrh of a mas at \(C\); it day then be ritanifeft from the fame grounds, that this ltrength will be of fo pmuch greater. force than the weight, and confequently able to move is.

The force of this faculty may be more conveniently underftood and u. of mm fed by the multiplication of leveral wheels, together with nuts belonging, unto each of them; as it may be cally experimented in the ordinary Jacks that are ufed for the roafting of mege, which commonly confift but of three wheels; and yet if we fup. pole a man tyed in the place of the weight, it were eafie by a fingle hair grisb ame faltned unto the fly or ballance of the shaur.
\[
\mathrm{G}_{4} \quad \mathrm{~J} \text { ack, }
\]

88
Arclimedes; or, Lib. I. Jack, to draw him up from the ground, as will be evident from this following figure.

Cap. 13. Mechanical Powers.
Where fuppofe the length of the flye or ballusce in comparifon to the breadeh of its axis, to be 2510 to one, and fo for the threc other whects in refpett of the nuts that belong unto them; (though this difference be oftentimes leff, as we may well allow is to be) withall fuppofe the weight (ora man ryed in the place of it) to be a hundred pounds: I fay, according to this fuppoficion, it is evident that the power at the ballance, which fhall be equal to the weight, need be but as 1 to 10000 . For the firft axis is concicved to be bur as the tenth part of its wheel; and therefore though the weight in it delf be as 10000, yet unto a power that hath this advanrage, ir is bur as 1000 , and therefore this thoufand unto the like power at the feccond wheel, will be but as 100 , and this 100 at the third but as 10; and liflly, thisten at the ballance but as one. But the weight was before fuppoled to be 100 , which to the firt wheel will be but 10 to the ficond as one, to the third as a deci- hundredth part: fothar if the hair be but Atrong enough to lift sam, that is one ren thoufandrh part of a man, or (which is all one) one hundreth part of a pound, it may as well ferpe by the helpof this Inftrument for the drawing of tim up. And though there be not altogether fogreat a dilproportion betwixe the feveral parts of a Jack, (as in many ferhaps there is nor) ; and though a man may be heavier than is here liuppofed; yet 'ris with all confiderable, that the ftrength of a hair is able to bear much more than the hundredth part of a pound

Coment. inGenc.r. v.co.art.6. Devirihus motricib. Thear. 16 .

Upon chis groiund Merfenmus tells us out of Soloman de Caves, that if there were an engine of 12 wheels cach of them with teeth, as allo the axes or nurs that belong untothem, it the Diameter of thefe wheels were unto each \(4 x x^{s}\), as a hundred to one: and if we fuppole thele wheels to be fo placed, that the tecth of the ont might take hold of the axis that belongs unto the next ; and that the axis

Cap. 13. Mechanical Powers.
of the handle may turn the tint wheel, and the weight be eyed unto the axis of che lat; with fuck an engine as this, faith he, a child (if he could land any where without this cart) might with much cafe move it towards him.
For according to the former foppofition, that this Globe of fra and land, did contain as many hundred pounds, as it doth cubical feet, viz. 240000:000000700000003000, it may be evident chat any Atrengerh, whore force is bur equivalent to 3 pounds, will by fuch an engine be able tomoveit.

\section*{\(\rightarrow\)}

Of this kind was that engine fo highly extolled by Stemming, which he calls Pascration, or Omnipotent, perefaring it before the inventions of praxi. . Archimedes. It confifted of wheels and nuts, as shat before fipecified is fiuppolid. Hither alto Could be retiered the force of racks, which ferve for bending of the itrorgelt bows, as allot that little pocker-engine wherewith a dian may break or wrench o-
\(R\) mill.
Fig. 160. pen any door, rogether with divers the like inltrumens in common ufe.

\section*{C A P. XIV.}

Concerning the infintte flrength of Wheels, Pulteys, and screws. Tbat "t is pulable by she multiplication of thefe, to pail up any Oak by the roots with a hair, lift it np nutit a firsm, or blow it up wish omes breath, or to perform thr greaseff labour nysh the leaft power.

F
Rom what hath been before del:. vered concerning the nature of the Pulley, it is ealie to underftand, how this faculty allo may be froportioned berwixt any weiglic, and any power, as being likewife of infinite Itrength.
?Tis reported of Ardimeder, that with ancogine of Pulleys, to which

\section*{Cap. 14. Mechanical Powers.} ding upon dry land. This engine Zetzes calls Trifpatume. or Trifpaflum, which fignifics only a threefold Pulley. But hacrein he dorh evidently miftake ; for'ris not polfible that this alone fhould ferve for the motion of fogrear a weight, becaule fuch an engine can burmake a lublextuple, or at moft a fubleptuple proportion betwixt the weight and power, which is much too listle to reconcile the ftrength of a mon unto fo much heavinefs. Therefore Ubaldies doth more properiy ftyle it Poly Pa.ffon, or an inftrument of many Pulleys: How many, were eafie to find our, if we did exactly know the weight of thofe ancient meafures; fuppofing them to be the fame with our bufhel in Engisnd, which con. tains 64 pints or pounds, the whole would amount to 320000 pounds, half of which would be lightned by the help of one Pulley, three quarters by two Pulleys, and fo onward, according to shis fubduple, fubquadruple, and fublexruple proportion: So that if we conceive the flrength

\section*{94} Archimedes;-or, Lib. I. of the left hand to be equivalent und 20 or 40 pounds, it is is eafieto find our how manv Pulleys are required to inable it for the motion of fo grear a weight.

Comanar in Grome.t.v. 14. art. 6.
E us, that any litte child with an engine of an hundred double Pulleys, might ea. Iy move this great Globe of earth, though it were much heavier than ir is. And in reference to this Pref. and Mrebinn. sufiestr. kind of engine ((aith Monantholius) are we to underftand that aftertion ol Archimedes (as he more immediately intended it) concerning the polfibili. ty of moving the World.

The Wedg was before demonitrated to be as a double Veatis or Leaver, and therefore it would be need. lels to explain particularly how this jikewile may be contrived of intinite force.

The Screw is capable of muliplication, as well as any of the other faculcies, and may perhaps be more ferviceable for fuch great weights, than any of the rift. Archimedes his engine

Cag. 14. Mechanical Powers.
engine of greateß Arengeh, called Charifion is by fome thought.to confilt of thefe. Axis babubas cmm infinisis cochteis. And that other engine of his called Heltx (mentioned by * A thenaus) wherewith he lifted Huro's great Thip into the fea, without any other help, is molt likely to be framed of perperual fcrews, faith Rin valtus.

Whence it may evidently appear, that each of thele Mechanick faculries are of infinite power, and may be contrived proportionable unco any concrivable weight: And that no natural Arength is any way comparable unto thefe aruficial inventions.
'Tis reported of s.mpfor, that he could carry the gates of a City upon his fhoulders, and that the ftrongeft bonds were unto him but as hax burne wich fire; and vet his hair being ha. ved off, all his ltrength departed from him. We* read of Milo, that he could carry an Oxe upon his back, and yet when he tried to tear an Oak alun-

Stevinde.
Satic. prox.
Sca Berfon. Dripono-
soph) 1.5 .5
opcterexte. Dripono-
soph) 1.5 .5
opcterexte. Dripono-
soph) 1.5 .5
opcterexte. Achimed
der, that was fomewhat riven before , having drawnit to its utmolt, is fuddenly joyned together again, carching his hands in the cleft, and fo Atrongly manacled hiln, that he became a prey to the wild bealts.

But now by the [e Mechanical contrivances, it wereeafie to have made one of Sampfin's hairs that was thaved off, to have been of more ftrength thanall of them when they were on. By the help of the (e arts it is polfible (as I Thall demooitrace) for any man to lift up the greateft Oak by the roots with a ltraw, ro pull it up with a hair, or co blow ir up with his breath. Suppole the roots of an Oak to extend a thouland foot fquarc, (which is almolt a quarter of a mile) and forty foot deep, each cubical foot being a hundred pound weight; which though ir be much beyond the extenfion of any trec, or the weight of the earth, the compals of the roots in the ground (according to common opinion) not excending further than the branches of it in che air, and the depth

Cap. 14, Mechanical Ponces. depth of it not above ten foot beyond which the greateft rain doth not penitrate (liiith*S arr). Enovinearum diligeos foffor affirm mallam pluvians offer sam magyar, que ceram wire deem pedes in alturudisems madefscist. And because the root mut receive its nourifiment from the help of how. ers, therefore it is probable that it doth not go below them. So that (I fay) though the proportions lippoled do much exceed the real truth, yet it is conitlerable that feme grits overplus mut be allowed for that labour which there will be in the forcible divulsion or feparation of tie parts of the earth which are continned.

According to this fuppofition, the work of forcing up the Oak by the roots will be equivalent to the liftlinn up of 4000506000 pound weight, which by the advantage of fuck an engine, as is here defcribed, may be cattily performed with the leal conceivable power.
dist sh.

Cap. 14. Mechanical Pobers.
The whole torce of this engine doth confift in two double Pulleys, twelve wheels, and a lail. One of thefe Pulleys at the bottome will diminith half of the weight, fo that is Ihall be but as 2000000000 , and the other Pulley will abate \(\frac{1}{4}\) three quarsers of it; fo that is flall be bur as 1000000000 . And becaufe the beginding of the Aring being faftned unto the lower Pulley, nakes the power to be in a fubguintuple proportion unto the weight, therefore a see ch. \(s\). prower that flall be as ioxc000000, that is, a fubquadruple, will be fo much Itronger than the weight, and confequently able to move it. Now luppole the breadth of all the axes and nuts, to be uneo the Diameters of the whed as ten to one; and it will then be evident, that to a power ac the firit whoel, the weight is but as 100000000 . To the lecond as 10000000. To the third as 1000000 . To the fourth as \(100=00\). To the fifth as 10000 . To the fixth as 1000 . To the feventh as 100 , To the eighth H 2

25 tenth as: \({ }^{\text {i }}\) one decimal. To the eleventh as rad 'To the twelfh as nos. And the lailes yer lelf. So that if the ftrengrh of the fraw, or hair, or breath, be but squal to the weight of one thoulandth part of a poumd, it may be of lifficient force to pull up the Oak.

If in this engine we fuppofe the difproportion betwixe the wheels and nuts, tobe as an hundred to one, then it is very evident, that the fame ftrength of breaih,or a hair, or a Araw, would be able to move the whole world, as will be eafily found by calculation. Let this great Globe of fea and land be imagined (as before) to weigh fo many hundred pounds as it contains cubical fect; namely, 2400000000000000000000000 piunds. This will be to the firf Pulley, 1200000000000000800000000 . To the fecond lefs than 600000000000000000000000 . But for more cafie and convenient reckoning, let it be luppofed to be formowhar more, 7yx. 1000690090000000090000000.

This

\title{
Cap. 14. Mechanical Povers.
}

\section*{This tothe firft wheel will be bat as}
\begin{tabular}{|c|c|}
\hline To the feeend as & 10000000000000000090900 100000000000000000000. \\
\hline To the third as & 1009000908030800009. \\
\hline To the fourtio as & 10600500000000000. \\
\hline To the fifh & 100000000000000. \\
\hline To the finch & 1200008000900. \\
\hline To the Seventh & \\
\hline To the eiglith & 100 \\
\hline To the ningh & 1000000. \\
\hline To the rench & 1000 \\
\hline To the eleventh & 109. \\
\hline Torthe cxelifh & \\
\hline To the crils as & 杨 \\
\hline
\end{tabular}

So that a power which is much lels than the hundredth part of 3 pound, will be able to move the world.

It were needlefs to fiedown any particular explication, how fuch Mechanical Atrengeli may be applyed unto all the kinds of local motion; fince this, in it felf, is lo facile and obvious, that every ordinary Artificer doth lufficiently underfland it.

The Species of local vinlent motion are by Arifotste rectroned to be thefe four.
\[
\text { II } 3 \text { Pulf. }
\]

108 Archimedes; or, Lib. I; PhyC. 1.7 . \(\left\{\begin{array}{l}\text { Pulfo. } \\ \text { Tractio. } \\ \text { Yectio. } \\ \text { Vertigo. }\end{array}\right.\)
Thrufting, Drawing, Carrying, Turaing. Unto fome of which all thefe artificial operations mult necefarily be reduced, the trength of any power being equally appliable unro all of them; So that there is no work impofible to thefe contrivances, but there may be as much acted by this Arr, as can be fancied by imagipation.
CAP. XV.

Concersing the preportion of nownefs and fipiftuefs in Mretbanical motions.

HAving already difcourfed concerning the flrength of thefe Mechanical Faculties: It remains for the more perfeet difcovery of their natures, that we treat fomewhat concerning thofe two differences of artificial motion:

\title{
Cap. 15. Mechanical Poxpers. \\ 103
} \(\left\{\begin{array}{c}\text { Slownefs, } \\ \text { and } \\ \text { Swiftnefs. }\end{array}\right.\)
Without the right underftanding of which, a man hall be exfoled to many abfurd miltakes, in attempting of thofe things which are either in themelelves impofible, or elfe not to be performed with fuch means as are applyed unto them. I may fafely affirm, that many, if not moft miftakes in thefe Mechanical defigns, do arife from a mif-apprehenfion of that difference which chere will be betwixt the flownefs or fiwiftacts of the weight and power, in comparifon to the proportion of their Teveral ftrengths.

Hence it is, that fo many engies invented for mines and warer-works do fo ofen fail in the performance of that for which they were intended, becaufe the artificers many times do lorget to allow fo much time for the working of their engine, as may be proportionable to the difference betwixe the weight and power that
betong belong unto them; whercis he that righty underitands the grounds of this Art, may as cafily findour the diffe. rence of lipace and tinne; requited to the motion of the lieight and power, as he may their difterent itrengehs; and not only tell how any power may move aniy weight, but allo in what a fpace of sime it may move any fpace or diffance.
ll it were poffible to conerive fuch an invention, whereby any conceivable weight may be moved by any conceivable power, both with the fame quicknefs and fpeed (as it is in thole things which are immediarely ftirred by che hand, without the help of any other inftrument) the works of nature would be then too much fubjetted to che power of art : and men might be thereby incouraged (with the builders of Balel, or the rebel Gyants) to fuch bold defigns as would nor become a created being. And thercfore the wifdom of Providence hath fo confined thefe humine Arts, that what any invention hath hath in the frength of its motion, is abated in the Momefs of ir; and what it hach in the exrraordinary guicknefs of its motion, mult be allowed for in the great fremgts that is required unto it.

For it is to be obferved as a general rule thar the fpace of time or place, in which the weight is moved, in comparilon to that in which the power dorh move, is in the fame proportion as they themfelves are unto one anocher.

So that if there be any great difference betwixt the ftrength of the weight and the power, the fame kind of difference will there be in the fpaces of their motion.

To illuftrate this by an example:

Let

196 . 'archimedes; or? Lib? I.

\(\therefore\) Lict the line \(G A B\), reprefent a ballance or leaver, the weight being fuppofed at the point \(G\), the fulciment at \(A\), and the power furtaining the weight at \(B\). Suppofe the point \(G\), unto which the weight is faftned, to be elevated unto \(F\), and the oppofire point \(B\), to be deprefted unto \(C\); 'tis evident that the arch \(E G\), or (which is all one) \(D E\), doth thew the fpace of the weight, and the arch \(B C\), the motion of the power. Now both

Cap. 15. Mechanical Powers. 107 boththefe arches have the fame proportion unto one other, as there is betwixt the weight and the power, or (which is all one) as there is betwixt their leveral diftances from the fulciment. Suppole \(A G\), unto \(A B\), to be as one unto four, it may then be evident that \(F G\), or \(D E\), will be in the fame proportion unto \(B C\), Por as any two Semidiameters are untoone another, fo are the feyeral circumferences defcribed by the.a, as alfo any proportional parts of the fame circumferences.
TAnd as the jexight and power do thus siffes th the faces of their metions, C : likewife ir the flownels of ir ; the one moving the whole difance \(B C\), in the fame time, wherein the other paffes only G F. So that the motion of the power from: Bro \(C_{1}\) is four cimes Cwifter than ithat of the weight from G to \(F\). And thus will it be, if we luppofe the difproportions ro be far greater, whether or no we conceive it, cither by 2 contimstion of the fame inftrument and faculty, as in the former example, or by a multiplication ofdivers, as in Pulleyej. Wheels, \&ec. By how much the power is in is felflefs thinn the weight, by to much will the motion of the weight be flower than that of the power.
To this purpofe I fhall briefly touchat one of the Diagrams expref: fed before in the rwelfth Chapter, concerning the muleiplication of Leavers.

In which, as each infrument doth diminifh the weight according to a decuple proportion, fo allo do they dimininh the fpact and foomefs of its motion. For if we fhould conceive the firlt Leaver \(B\), to be depreffed unto its lowert, fuppole ten foor, yet the weight \(A\), would not be rair fed

Cap. 15. Mechanical Pobers.
led above one foot; buc now the fecond Leaver at iss uemoft could move but a teath part of the firt, and the third Leaver but a tenth part of the fecond. and to of the reft. So that the lalt Leaver \(F\), being deprefled, will pals a fpace rocoo greater, and by a motion, 100000 fwifter than the weight as A.

Thus are we to conceive of all the other faculties, whercin there is confantl, th fame difproportion fee wixt the weight and power, in relpedt of the faces and nownels of their motions, as there is betwixt their feveral gravitics. If the power be unto the, weight but as one unco a hundred, chen rhe fpace through whicli the weight moves, will be a hundred cimes lefs, and confequently the motion of the weight a hundicd times llower than that of the power.

So that it is but a vain and impor. fible fancy for any one to think that he can move a great weight with a litele pouer, in a firtie face; but inall whefe Mectanical attemprs, that advantage ftrength of the motion, mult be fill allowed for in the flownefs of it.

Though thefe contrivances do fo extremely increafe the power, yet they do proportionably protract the time. That which by fuch helps one man may do in a hundred days, may bé done by the immediate ftrength of a bundred men in one day.

\section*{C A P. XVI.}

That it is pofible to contrive fucts an artificial motion, as bast be of a 1 mwme/s proportionable to the friftrmefs of the heavens.

TT were a pretty fubtilcy to enquire after, whether or no it be not poiffible to contrive fuch an artificial motion, that frould be in fuch a proportion flow, as the heavens are fuppofed to be fwift.

For the exad refolution of which, it would be requifite that we bould firlt pirch upon fome medism, or in: different

\section*{Cap. 16. Mechanical Towers. isi} different motion, by the diftance from which, we may judge of the proportions on cither lide, whecher Hownefs or Iwifinels. Now becaule there is not any. fuch msurel medjimen, which may be ablolurcly ftyled an indifferent motion, but that the fwifenefs and flownefs of every thing is ftill proportioned eipher to the quan. tity of bodies, in which they are, or fome orher particular end for which they are defigned ; therefore we mult take liberty to luppofe fuch a mori: on, and this we may conceive to be about 1000 paces, or a mile in an hour.

The farry heaven, or 8 d f Phear, is thought to mave 42398437 miles in the lamefpace: Sosthat if is thay be demonfrated that it is poffible to contrive fuch a motion, which going on ina conftans diref courfe, fall pals burt the 42398437 pritt of a mile in an hour, it will then be evideat, that an artificial motion may be Cow, in thofame proporion as the beavens: are fwifr.

Now it was before manifefted, that according to the difficrence berwixt the weight and the power, fo will the difference be betwixt the flownefs or fwiftedf of their motions; whence is will follow, that in fuch an engine, wherein the weight fhall be 42398437 pounds, and the power that doth equiponderate it, but the \(4239^{8} 437\) part of a pound (which is eafie to comtrive) in this engine the poiver being fuppofed to move with frich a fwiftreff. as may be anfiverable tớ a mile an hour, the weight will pafs but the 42398437 part of a mile in the lame fpace, and fo confequently will beproportionably flow unto the fivititnefs of the Heavens.

It is related by our Country-man Proferre 7. Dee, that he and Cirdan being borh rogether in their travels, they did fee an inftrument which was at firft fold for 20 talents of gold, wherein there was one wheel, which confantly moving round amongft the reft, did not finith one revolution under the fpace of fevcn thouland yeirs.

Cap. 16. Mechanical Powers.
But if we farther confider fuch an inftrument of whecls as was mentioned before in the \({ }_{14}\) Chapter, with which the whole world might be eafily moved, we Thall then find that the motion of the weight by that, muft be much more flow, than the heavens are fwift. For though we fuppofe (laith Stevinus) the handle of fuch an engine with 12 wheels to be turned about 4000 times in an hour, (whici is as often as a mans pulfe doth beat) yet in ten years fpace the weight by this would not be moved above "IIM 0000000000002000 parts of one foot, which is nothing near fo much as an hairs breadth. And it could not pafs an inch in 1000000 years, faith Mrrfennus.

The trath of which we may more eafily conceive, if we confider the

Pbanim: Achimen. prop. 11. frame and manner of this 12 wheel'd engine. Suppofe that in eachaxis or nur, there were ten reeth, and on each wheel a thoufand: then the lails of this engine mult be turned a hundred times, before the firlt wheel (reckon-

114 Arclimedes; or, Lib. I.
ing downward) could be moved round oince, and ten thoufand times before the ficond wheel can finifh one revolution, and fo through the iz whecls, 'according to this multiplied proportion!'

So thar befides the wonder which there is in the force of thefe Mecha: nical motions, the extreme flownefs of them is no lels admisable; If a man confider chat a body would remain in fuch a conftant dirett mos tion, that there could nor be one minute of time wherein it did notitid fome fpace, and pals on further, and yet that this body in many years togerher fhould not move lo far as an hairs breadth.

Which notwithitanding may evidently appuar froin the former inftance. lor fince it is a natural principle, that there can be no penerration of bodies; and fince it is fuppofed, that each of the parts in this engise do touch one another in their fuperficies, thereforc itmult neceffarily follow, that the weight docs begin and

Cap. 16. Mechanical Powers.
and continue co move with the power; and (however it is intenfible) yet it is certain there mult be fuch a morion fo extremely flow, as is here fpecified. So full is this art of rase and incredible fubtilties.

I know it is the affertion of Cardan, Morus valde sardi, neces \(\int\) ario quieres habent intermediss. Extreme flow

De umime tact rermanh L.9. 5. 47. motions have neceffarily fome intermediate ftops and relts: But this is only (aid, not proved; and he fpeaks it from fenfible experiments, which in this cale are lallible. Our fenfes being very incompetent judges of the icveral proportions, whether greatnefs or lirtlenels, flownefs or friftnels, which there may be amongt things in nature. For ought we know, chere may be fome Cirgsmical bodies, as much lefs than ours, as the earth is bigger. We fee what ftrange difcoverits of extreme minute bodies, (as lice, wheel-worms, mites, and the like / are made by the Microfropen, wherein their feveral parts (Which are altogether invifible to the bare eyc) will diftinetly appear: and perhaps there may be other infets that live upon them as they do upon us, 'Tis certain that our fenfes arecextremely difproportioned for comprehending the whole compafis and laticude of thingser. And becaule there may be fuch difference in the mosion as well as in the margnisude of bodies; therefore though fuch extreme nownefs may feem attogether impolible to fenle and common apprebenfion, yet this can be no fufficient argument againft the realisy of is.

\section*{CAP. XVII.}

Of frifinefs, borw it may be increafod to any kind of proportion. Concern. .. ing theigreat forse of A rchimedes his Engimes. Of ibe Ballifta.

B
Y that which hath been already explained concerning the downels of motion, we may. the better underfland the nature of fwiftnels, bork of them (as is the nature of oppolites)

Cap. 17. Mechanical Paurers.
fires) being produced by contrary caufes. As the greatnets of the weighr in refpect of the power, and the great diftaice of the power from the fulciment, in comparifon to that of the weight, does cauléa llow motion: So the grearnefs of the power above the weight, and the greater diflance of the weight from the center, in comparifon to that of the power, does caule a fwift motion. And as it is polfible to contrive a motion unto any kind of nownefs, by finding out an anfiverable difproportion betwixt the weight and power: fo likewife uneo any kind of fwiftnofs, For fo much as the weight does exceed the power, by fo much will the motion of the weight be lower; and fo much as the power doesexceed the weight, by fo much will the motion of the weight be fwiffer.
\[
13 \quad \text { In }
\]

In the Diagram fet down before, if we fuppote \(F\) to be the place of the power, and \(C\) of the weight, the foint \(A\) being the fulciment or conter, then in the lame face of 1 iope, wherein the power does move from \(F\) to \(G\), the weight will pafs from \(C\) to \(B\). Thefe diftances having the fame dif. proportionunto one another, as there is berwixt \(A F\), and \(A C\), which is fuppofed to be quadruple. So that pithis example, the weight will move
four

Cap. 17. Meclamićal Pomers.
four times fwifter than the power. And according as the power dows ex. ceed the weight in any greater dif: proportion, to will tie fwituefs of the weight be auguented.

Hence may we conceive the reafon of that great Force which there is in Sling:, which have fo much a greater lwiftnefs, than a fone throwa from the hand, by how much the end of the Sling is larther off from the fhoulder-joynt, which is the center of motion. The Sacred hiftory concerning David's vidtory over Goliath, may fiuficiently evidence the force of thefe. Vegetins relates that it was ufual this way to Arike a man dead, and beat the foul our of his body, withour fo much as breaking hisarmour, or fecching blood. Mcmbres intepris herhele bensm wulnus imporsant, of fine invidia fanguinis, hoflis lapiais ict" intercat.

In the ufe of thefe, many of the Ancients have been of very exquifite and admirable skill. We read of feven hardrea Beajumites lefthanded, that conld

Judges 20: \(I_{4}\) Purg

15am. 17. 49.

Leffurs Po Cior. \(L_{4} 4\). Dintog. 2.
fling a fonme at a bairs bresdeb, and nor mifs. And there is the like foried of a wholc Nation among the Indearss, who from their excellency in this art were ftiled Butcares. They were fo
 Aldiery. pionim. Sicull. Auble 3H. 1. 5. L. Alerss Mifiti, 3. rap. a 30, Bu*wns Aubantu ic morihow gratum, 1.3.6. 36.
- \(\mathrm{H} / \mathrm{h} .1 \mathrm{I}+\) \({ }^{-1}\) Hifor. Chritar 2. filtor. 35. 14. 2.5. 3 \({ }^{4}\) Marcol tur. - Hifer. 12 frict in teaching this ant unto their young ones, Zis crbum puir ì mafre naw acerpur, mifi gutm ipsa monftrante per6u/fit, That the Morher would not give any meat to her child, till (being let at Come diftance) he could hit it with Ainging.

For the farther illultracion of this fubject, concerning the faiftrefs of motion, I Thall briefly fpecitie fome parriculars concerning the engines of War ufed by the Ancients. Anongt thele, the molt famous and admifable were thole invented by Arche medes, by which he did perform. fuch frange exploits, as (were they not releted by to many, and fuch judicious Authors) would ('carce feem credible even ro thefe more learned ages. Tlie aets ofthar famous Engi. neer, are largely fer down by a Polfus.
 vy

Cap. 17. Meclanical Popers. 121
wr. and divers others. From the firls of whom alone, we may have fulib. cieni evidence for the truth of thofe relations. For befides that he is an Author noted to be very grave and ferious in his dificourfe ; and docs lor lemnly promife in one. place that he Hiftor l. 4 jurra inicium. will retare nothing bue what either the himelf was an eye-nicnefs of; or elle what he had received from shole shat were to ; I Gaj, beffess all chis, it is confiderable, that he himfilf was horn not above thitty years after the fiege of swacnfe. And atterwards liaving occafion to sarry lome weeks in that City, when lue travelled with Seip.a, he might chere perhaps tee thole engines hinfelf, or at lealt take his Information from fuch as were cye. witnelles of slicir force: So that divera can be no colourable prerence lor any one to diftrult tie particulars related of chent.

Inbricf, the fum of their reporss is this: Whenthe Ramen Forces under the conduet of Marseilus, had laid ficge unto that fannous City, of which which both by their former fuccerfes, and their prelent ftrength, they could not chule but promile themfelves a (peedy viftory); yer the arts of this one Mathematician, notwithftanding all their policies and refolutions, did ftill beat them back to their great diladvantage. Whether they were near the wall, or farther from it, they were ftill expofed to the force

 mulritude of thofe ftones and arrows, which he hrot againft them, was he flyled kxatoxyesf, or Brisieus. Thote delenfive engines that were made by CxilRhed. I. P.C. 16. Plutcus. Teftudo. the Romans in the form of Penthoules for to cover the alfailants from the weapons of the befieged, thele would he prefently batter in pieces with grear ltones and blocks. Thote highrowers erected in fome of the hips, out of which the Romant miphe more conveniently fight with the defendants on the wall, thele allo were
fo broken by his engines, that no Cannon or other inftrument of Gunpowder, (faitha learned man) had they been then in ufe, could have done grcater milchief. In brief, he did fo molett them with his frequent and prodigious batteries, that the common foldiers were utterly dilcouraged from any hopes of fuccefs.

What was the particular frame and manner of thefe engines, cannot cerrainly be determined; but to conerive fuch as may perform the like ftrange effects, were not very difficult to any one who is chroughly verfed in the grounds of this art. Though perhaps thofe of Archimedes in relpect of diyers circumftances, were much more exact and proper for the purpolis to which they were intended, than the invention of others could be; He himfelf being fo extraordinarily fubtil and ingenious above the common fort of men.
'Tis probable that the general kind of thele engines, were the fame with thole that were ufed afreswards wards amongit the Romins and other Nations. Thefe were commonly dividedinto rivo forts: Ityled.
\[
\cdot\left\{\begin{array}{l}
\text { Bistliffe. } \\
\text { Cate,spuls.. }
\end{array}\right.
\]

Vud.Naudxum de Stud.Miliear.l. 2
 ajinater called a/fo גя9: xvoét. \(\lambda\) A. Fundthat lus l'err. su.

Lib. 3-

Both which names are fometimes ufed promifasoully; bur according to their propriety + Ballyls does fig. nitic an engine firt thie thooting of ftones, and ciasapalta for darts or arrowss

The former of thefe was fitted cithar to carry divers leffer 1tones, or elfe one:greaccit one. Some of thefe engines made for greac fones, have been proportioned ro lo valt and insmente a weight, as may leem almoft incredible: which occafioned shat in Lacan.

At faxum gotuter ingexti refobriatifi

With thefe, they could ealily batter down the Walls and Towers or any lorr. So Ovid.

\section*{Cap. 37. Mechanical Towers.}

Quam grave ballifa mavia: pulfat - onsus.

And Sintius- Quo zurlinac pichlica quondion,
riLubrati faliant portarame in clquifra molures.
The ftones that were calt froon thefi, were of any form, Enormes of lcaus. shrales, Milltones or Toinblones. Sometimes for the farther annoyance and tcrror of any befieged place, they would by thefe throw ineo it dead bodies, either of men or horles, and fometines only pasts of them, as mens hoads.

Albenaus mentions one of shefe Pallifle that was proportioned unto a ftone of threc talents weight, cach talent being 120 , pounds. (fisth \(f_{r-}\). truvius) fo that the whole will a. mount to 360 pounds. But it is fto. ried of Arefimedes, that be caft a ftone into one of Murcellus hissthips, which was found to weighten rakents. There is fome differenceamonght * Authors, concerning what kind of tals at this fhould be underfood, but is iscertain that per Enr.

126 Archimdes; or, Lib.I. that in Plurarchstime, (from whom

Nandzus de fludio Miliel.

De Surd Mill 2. we have this relation) one talent did amnunt to rio pounds (laith Sudsi) according to which account, the fone it 位f was ol nolets than twelve hun. dred pound weight. \& weapon (one would think) big enough for thofe rebel Gyants that fought againft the gods. Now the greateft Cannon in ufe, does not carry above 64 pound weight, which is far thort of the ftrength in thefe Mathemarical contrivances. A mongit rhe Turks indeed, there have beenfonerimes ufed fich powder-jnfruments, as may equal the force of thole inve nted by Archimedes. Gab. \(N\) sudeus tells us of onc bullet fhor from them at the figge of Comflatinople, which was of above 1200 pound weight; This heaffirms from the relation of an Arclibiflop, who was then prefent, and did fee it; the piece could not be drawn by lefs than an hundred and fifiy yoak of oxen, which might almoft have ferved to draw away the Jown it felf. But though there hath been perhaps fome

Cap. 17. Mechanical Powers.
one or two Cannons of fuch a prodigious magnitude, yet it is certain that the biggelt in common ufe, does come far fhort of that Itrength, which was ordinarily in theleMechanical engines.

There are divers figures of thefe Ballifs, let out by vigetius, Lipfius, Valremiand others; but being without any ex- Milied.ı plication, it is not very facil to ditcover \(\varepsilon_{4}\) in what their forces did confilt.

I have here expreffed one of them moft eafic to be apprehended; from she underftanding of which, you may she better guefs at the nature of the reft.

\section*{That}
\[
\text { it } \quad \therefore \ddots
\]

That great box or caviry at \(A\), is fuppofed to be full of fome heavy weight, and is forced up by the turning

Cap. 18. Mechanical Powers: ning of the axis and fookes B C. The ftone or huller to be difcharged being in a kınd of Iling at \(D\), which when the greater weight \(A\) defcends, will be violently whiried upwards, till that end of the fling at \(E\), coming to the top, will fly off, and difcharge the ftone as the skilliul Artift fould direct it.

\section*{C A P. XVIIt.}

Conterning the Catapulie, or Engines for Arrows.'

H E orher kind of engine was
 which fignifies a fpear or datr, becaufe it was uled for the fhooting of fuch wcapons: fome of thefe were proportioned unto fpears of twelve cubits long ; they did carry with fo great a force, ut interdum nimio ardore fosmtil.
Lant, (faith Ammmianus) that the wea. pons difcharged from them were cometimes(if you can believe it) fer on fire by the fwifnels of their motion. k The

Poliarces.
4.3.Di21.n.

Dind. Sic. Bibliork. f. 14 . Sundus de Invert Rerum 1. 2.
\(a\) Chron. 26.15.
\(\operatorname{sir}\) Franc.
Bucon's Nat hijf. - 1 ㄲ․ 704.

The frit invention of thefe is commonly afcribed to Diomyfur the younger, who is faid to have made them amonglt bis ocher preparations againlt Carthye. Bur we have good reafon to think thesm of more ancient ufe, becaufe we read in Scripture, that vicuiah made in Jarufalem, engines invensed by cunning mats, to faar arrows and priat flones withal; tho it is likely the re inventions were much bettered by the experience of afterages.

The ufual form of thefe Catapul: t.e, was much atter the manner of great Lows placed on Carriages, and wound up by the ftrength of leveral perfons, And from that great force which we find in leffer Bows, we may eafily gheis at the greater power of thele ocher engines. 'Tis relaced of the Turkifh Bow, that it can frike an arrow through a piece of fteel or brafs two inches thick; and being headed only wich wood, it pierces Timber of eight inches. Which though it may leem incredi-

Cap. 18. Mechanical Powers. ble, yet it is attefted by the expcrience of divers unqueltionable witneties. Barclay in his Icon asimorum, a man of fufficient credit, affirms, that he was an eye-witnefs, how onc of thele Bows with a littic arrow di:: perce through a pie, e of feel three fingers thick. And yet thete Bow's being fomewhat like the long Bows in ufe amongit us, were benc only by a mans immediare ftrength, withous the help of any bender or rack that are ufed to others.

Some Turkilb Bows are of that (trength, as to pierce a plank of fix inches in thicknefs, (I fpeak what I have feen) faith \(M\). Fo. Greaves in his Pyromudograpbia. How much greater' force then may we conceive to be imprelled by the Catapulte?

Thefe were fometimes framed for the difcharging of two or thrce arrows together, fo that each of t'sem might bedirected untoa feveral aim. But is were ascafie to conrive them after the like manner for the carriage of twenty arrows, or more, as in this figure. K 2 Both

THu wien Both thefe kinds of engines when Borfory fitid thicy were uled at the liege of any Porarcetes mirro was grear wooden Turrer (firf invented frf afidat ens frugt of C.jprus, and is thut dalcribedtr Diderews. Sicul. Bib hioth. l.20. City, were commonly carried in a great wooden Turret (firft invented by * Demetrims). It was driven upon four wheels at the bottom, each of its fides being forty five cubits, its height ninery. The whole was divided intonine feveral part tions, every one of which did contain divers engines for batrery: from irs ule in the battering and taking of Citics it is

\author{
Atiled
}
friled by the name of Helepolis. He that would be informed in the nature of Bows, let him confult Mir. fensus de Ballifica 心i Acontifmologia, where there are divers fubtil inquiries and demonitrations concerning the strength required to the bending of them to any diftance; the force they have in the dilcharge, according to leveral bents, the itrength required to be in the ftring of them, the feveral proportions of Cwiftnefs and diftance in an arrow fhot vertically, or horizontally, or tranfverfally.

Thofe ftrange effects of the Turkilb Bow (mentioned before) fo much exceeding the force of others, which yet require far greater Arength for the bending of them, may probably be afcribed either to the natural caufe of attration br fimilitude of (wbflance (as the Lord Bacon conjectures); For in thefe experiments the head of the arrow fhould be of the fame fubltance (whether fteel or wood) with that which it pierces: Or elfe to that juft proportion betwixt the K 3 weight weight of the arrow, and the ftrength of the bow, which mult needs much conduce to the force of it, and may perhaps be more exactly difcovered in thele, thatit is commonly in o' thers.

\section*{C A P. XIX.}
\(A\) comparifon betwixt thefe ancient En. gines, and the Guw-powder infiruments now in ufe.
T T Thall not be altogether impertinent to inquire fomewhat concerning the advantages and difadvantages betwixt thofe Military offenfive engines, ufed amonglt the Ancients, and thofe of thefe later ages.

In which inguiry there are two particulars to be chiefly examined:
1. The force of thefe feveral contrivances, or the utmof that may be done by them.
2. Their price, or the greatnels of the charges required unto them.
1. As for the force of thefe ancient

Cap. 19. Mechanical Powers.
ent invenrions, it may fuficiently appear from thole many credible relations mentioned before; to which may be added that in \(70 f\) ephus, which he lets clown from his own eye-fight, being himfelf a chief Captain at the

Dc Br 1 Ha Judaico!.! 3. 6.9. frege of fot.pata, where thefe evenrs happened He cells us, that befidestle muititude of 1 erfons, who were llain by thefe Roman Engines, being nor able to avoid their force, by reafon they were placed fo far off, and out of fight; befides this, they did alfo carry liuch grear ftones, with logreat a violence, that they did thesewith batter down their Walls and Towers. A grear bellied woman walking about the City in the day-time, had her child ftruck out of her womb, and carricd halt a furlong from her. A foldier ftanding by his Captain Fofephow, on the wall, had his head Itruck offiby another Itone fent fiom thefe Ro non Engines, and histrains carriedthre furlongs off.

To this purpole Cired as relares oút of Ammianus Marceltimus, T.tmo \(\mathrm{K}_{4} \quad\) impizu gu. mowis intatli barbari fuerom ab co, deftiteruns ì pugys of sbierunt. Many foreign prople being fo amazed ar the Arange force of thefe Engines, that they durlt not conteft with thol. who were mafters ol liach inventiuns. 'Tis frequently alferted, that bullets have betn melted in the air, by thar extremity of violent motion impreft from thefe fings.

Fundiqgse coutorto tranjuerberat aëra plumbo,
Et medris Liguide glandes in mub\%as errant.
So Lucan, fpeaking of the fame Engines.

Inde faces of faxa volam, fpatioque folutre:
Aëris salide luquefacts pondere shimdes.
Which relations, though they may feem fomewhat portical and improbable, yet Ariflotic himeelf (De Corto, 16.2. . .7.) doth fuppole them as unqueftionable. From whence it may be inferred, that the force of thefe Ent

Cap. 19. Mecbanical Popors: gines does rather exceed than come fiopit of our Gunpowder inveations. Add to this that opinion of a learned man (which I cited before) that Archimedis in the fiege of siracufe, did more michief with his Engines, shan could have been wrought byany Canjons, had they been then in ue.

In this perhaps there may be fome difadvantage, becaule thele Mathematical Engines cannor be focafily and Tpeedily wound up, and fo certainly levelled as the other may.
2. As for the price or charges of both thefe, it may be confidered un. der three particulars :
1. Their making.
2. Their carriage or coovcyance.
3. Their charge and difcharging.

In all which refpects, the Cannons now in ufe, are of much greater colt than thefe other inventions.
1. The making or price of thefe Gunpowder inftruments is extremely expenfive, as may be eafily judged by the Weight of their materials. A whole
sh Wall. Ralcigh's Hift. 5. c. 3. Set. 16 Ste Lipfiusde militia
Romana 1. 5. Cannon weighing commonly 80nol. a half Canoon \(5000, a\) Culverin 4500 , a Demiculverin 3000; which whether it be in iron orbrafs, muft needs be very coftly, only for the matter of them; befides the farther charges required for the form and making of them, which in the whole mult needs amount to leveral hundred pounds. Whereas thefe Mathemarical inventions confiting chiefly of Timber, and Cords, may be much more cheap. ly made; The feveral degrees of them which fhall anfwer in proportion to the Atrength of thofe other, being at the leaft ten times cheaper; that is, ten Engines that Chall be of equal force either to a Cannon or Dcmicannon, Culverin or Demiculverin, may be framed at the fame price that one of thefe willamount to: So that in this refpect there is a great inequality.
2. As for the Carriage or conveyance; a whole Cannon dows require ar the leaft 90 men, or 16 horfes for the draught of it; a half Cannon 56

Cap. 19. Mechanical Powers.
men, or 9 horfes ; a Culverin so men, or 8 horles; a Demiculverin 36 men, or \(\boldsymbol{y}\) horfes; Suppofing the way to be hard and plain, in which nocwithftanding the mocion will be very low. Bur if the paflage prove rifing and fteefp, or roten and dirty, shen they will require a much greater Atrength and charge for the conveyance of them. Whereas thefe other inventions are in themfelves more light (if there be occafion for the draught of them) being cafily taken afunder into feveral parts. And befides their materials are to be found every where, fo chat chey necd not be carried up and down at all, but may be eafily made in the place where they are to be ufed.
3. The materials required to the charging of thefe Gun-powder inAtruments are very coitly. A whole Cannon requiring for every charge 40 pounds of powder, and a bullet of 64 pounds ; a half Cannon 18 pounds of powder, and a buller of 24 pounds; a Culverin \(: 6\) pounds of powder, and a bullet verin 9 pounds of powder, an la bullet of 12 pounds whereas thofe other Engines may be charged ouly with ftones, or (whi.h may ferve for terrour) with dend bodies, or any fuch materials as every place will afford withour any coft.

Sochen, pur all thefe togerher: If it be fo that thele ancient inventions did not come fhort of thefe ocher in regard of force, and if they do to much excel them in divers others refperts; It hould feem then, that they are much more commodious than thefe latrer inventions, and thould be preferre 'before them. But this enquiry camor be fully determined without parricular experience of both.

CAP.

Cap. 20. Mechanical Powers. 141

\section*{CAP. XX.}

Thut it is potshble to contrive fuch ajo sirifitial motion, as may be equally fiutt wath the luppyed motion of ibe feavens.

FOR the conclufion of this Difcourfe, 1 llall briefly examine (as Before conceming lownels) whethcr it be poffible to contrive liuch an artificialmouon, as rray be equal uno the luppoled fwiftrels of the heavens. This queftion hath been formerly propofed and aniwered by Car dan. where he applies it unro the fwiftnef of the Moons Orb ; but that Orb being the lowett of all, and conicquently of a dull and duggifh morion in comparifon to the reft ; therefore it will perlaps be more conveniene to underftand the queftion concerning the eighth fophere or ftarry heaven.
For the crue refolurion of this, is would te firlt obferved, that a material lubftance is altogelier incapa-
ble

Devarier.
Rerumi.g.
C. +7 .

2 ti eares - Planct, prop. 9.
ble of fogreat a celericy, as is ufually afcribed to the Coeleftial Orbs, (as I have proved elfewhere.) And therefore the quary is not to be underftood for any real and experimental, but only notional and Geometrical contrivance.

Now that the fwifnefs of morion may be thus increaled, according to any conceivable proportion, will be manifeft from what hath been formerly delivered concerning the grounds and nature of nlownefs and Fuifenefs: For according as we hall fuppofe the power to exceed the weight; lo may the motion of the weight be fwifter than that of the power.

But to anfwer more particularly: Let us imagine every wheel inthis following figure to have an hundred tecth in ir, and every nut ten:

\section*{Cap. 20. Mechanical Powers. \(\quad 143\)}

It may then be evident, that ons revolution of the firft wheel, will turn the nut, and confequently the fecond whecl on the fame axis ten times, the third wheel a hundred times, the fourth 1000 times, the fifth 10000 , the fixth a hundred thoufand times, the feventh 10,0000 times, the cighth 1000000 times, the \(9^{\text {th }} 100000^{-0}\) times, the Sails 1000000010 times; So that if we fuppofe the compais of thefe Sails cobe five foot, or one pace; and that the firft wheel is turned about after the tare of one thoufand times in an hour: It will then be evident, that the f:ils fhall be turned 1000000050500 times, and confequently thall pals r00000000 miles th the fame frace. Whereas a ftar in the fquator (according to common Hrpotherf) does move but \(4: 398437\) miles in an hour; and therefore it is evident that 'ris poifible Geometrically to contrive fuch an artificial motion, as fall be of greater fwiftnefs than the fuppoied revolutions of the heavens.
\[
D E D A
\]

\section*{D. \(x\) Debus.}
\(O R\),

\section*{Mechanical Motions.}

\section*{}

\section*{CHAP. I.}

The divers kind of. Automara, or Self f mowers. Of Mills, and the contrivance of Several motions by rarificat air. A brief digri/fion concerning mimd-guhs.

AMongit the variety of artifical motions, thole are of molt ute and pleafure, id which, by the application of rome continued itrengch, there is beflowed a regular and lasting emotion.

There we call the évimants, or faffmovers: which name in its utmoft lacitude, is Sometimes ascribed unico thole motions that are contrived from the ftrength of living creatures, as Chariots, Casts, \&ec: But in its flick. nets and propriety, is is only appliable unto fuck inventions, wherein the motion is caused either by fomething 1
that
that belongs unto its own frame, or elfe by fome external inanimate agent.

Whence thele aivriuxtre are eafily diftinguilhable into two forts.
1. Thole that are noved by fomething which is extrinfecal unto their oun frame, as Mills by water or wind.
2. Thofe that receive their motion from fomething that does belong to the frame ir felf, as Clocks, Watches, by weights, fprings, or the like.

Of both which forts there have been many excellent inventions: In the recital of them, I Thall infift chiefly on fuch as are moft eminent for cheir rarity and fubtilty.

A mongft the divriucte that receive their motion fromfome external agent, thofe of more com non ufeare Mills. And firf, the Warer-mills, which are thought to be before the otber, though neither the firt Author, nor fo much as the ti"e wherein they were invenced is fully known. And therefore Polvdor I'irgil refers them amongft orther fatherlefs inventions. Pliny indeed doth mention them; as being commonly ufed in his time, and yet orhers
others affirm that Beltifarius in the reign of \(\mathcal{F}_{\text {ffinian, }}\) did frft invent them : whence Pancirollus.concludes, that it is likely their ufe was for lome fpace intermitted, and being afterwards renewed again, they were then thought to be firft difcovered.

However 'tis certain, that this invention hath much abridged and advantaged the labours of men, who were before condemmed unro this flavery, as now unto the Gaileys. And as the force of waters hath been ufeful for this, fo likewife may it be conerived to divers other purpoles. Herein doth the skill of an artificer chiefly confilt, in the application of thefe common motions unto various and beneficial ends, making them ferviceable nos only for the grinding of corn, but for the preparing of ironor other oar, the making of paper, the elevating of water, or the like.

To this purpofe alfoare the Mille that are driven by wind, which are fo ousch more convenient than the other, by how much their fituations La may may be more ealic and common. The motions of thefe may likewife be accommodited to as various ufes as the other, there being farce any labour, to the performance of whicti an ingenious artificer cannot apply thems: To che fawing of Timber, the plowing of lind, or any other the like fervice which cannor be dilparched theordinary way, withoue muchtoil and tedioufnefs. And it is a wonderful thing to confider, how much mens labours might be eafed and contracked in fundry particulars, if fuch as were well skilled in the principles and praetices of thefe Mechanical experf: ments, would but throughly apply their Itudies unto the enlargement of Such invencions.

There are fome other motions by wind or air, which (though they are not fo common as the other), yet may prove of excellent curiofity, and fingularufe. Such was that mufical Matecel Varkhein Epift. aid joh. Es. neftum. inftrument invented by Cornelims Dreble, which being fer in the fun-lhine, would of it felf render a fofe and pleafant

\section*{Cap. 1. Mechanical Motions.}
pleafint harmony, but being removed into the hade would prefently be- Like :hes; come file in. The reafon ot it was this, Memnon? the warmth of the fin, working upon some moitture withinit, and ratifying the inward air unto fo great an externfion, that it mull needs leek for a vent or ilfue, did thereby give feveral motons unto the instrument.
Somewhat of this nature are the Eq lipiles, which are concave Veffels,confilling of Come fuch material as may endure the fire, having a final hole, at which they are filled with wa. ter, and our of which (when the Velfils are heated) the air doth iflue forth with a flong and hating violence. Thee are frequently used for the exciting and contrading of heat in the melting of giles or metals. They may alfo be contrived to be ferviceab!e for foundry other plealiant utes, as for the moving of fils in a chimney cornee, the motion of which fails may be applied to che turning of a fir, or the like.

Bur there is a better invention to
D. Vasime Rervm, 1 is.ces. whereby a (pit may be curned (without the help of weighes) by the motion of the air that afcends theChimney; and it may by ufeful for the roalting of many orgreat joynts: for as the fire muit be increafed aceording to the quantity of meat, fo the force of the inftrument will be augmented proportionably to the fire. In which contrivance there are thefe conveniences above the Jacks of ordinary ufe.
1. It makes little or no noife in the motion.
2. Ic oeeds no winding up, but will conftantly move of it felf, while there is any fire to rarifie the air.
3. It is much cheaper than the other inftrumenes that are commonly ufed tothis purpofe. There being required unto ir only a pair of Gails, which muft be placed in that part of the Chimney where ir tegins to be fraightned, and one whecl, to the axis of which the fipit line mult be faftered, according to this following Diagram.

The motion of thefe fails may likewife be ferviceable for fundry other purpofes, befides the turning of a fpit, for the chiming of bells or other mufical devices; and there cannor be any more plealant concrivance for L 4 con- ufefulalfo for the reeling of yarn, the rocking of a cradle, with divers the like domeftick occafions. For (as was faid before) any conftant motion being given, it is cafic for an ingenious artificer to apply it unto various fervices.

Thefe fails will always move both day and night, if there is but any fire under them, and fomecimes though chere be none. For if the air withour, be much colder than that within the room, then muft this which is more warm and rarificd, naturally afcend through the chiminey, to give place unto the more condenied and heavy, which does ufually blow in at every chink or cranny, as experience thews.

Unto this kind of motion may be reduced all thole reprefentations of living creatures, whether birds, or beafts, invented by Cieflime, which were for the molt part performed by the motion of air, being forced up either by rarefaction, with fire, or tle by pompreffor, through the fall

Cap. 1. Mechanical Motions.
of fome heavier body, as water, which by poffefing the place of the air, did thereby drive it to feek for lome other vent.
I cannot here omit (though it be not altogether So pertinent) to mention that late ingenious invention of the wind-gun, which is charged by the forcible compreffion of air, being injected through a Syringe \(;\) the ftrite and diftention of the imprifoned air ferving ty the help of little falls or Shuts within, to ftop and keep clofe the vents by which it was admitted. The force of it in the difcbarge is almoft equal to our powder-guns. I have found upon frequent trials (faith Merfinnus) that a leaden buller fhor from one of thefe Guns againt a

Plixnomenis piser. matnen, Trop 32 flone wall, the face of 24 paces from it, will be beaten into a thin plate. If would be a confiderable addition to this experiment which the fame Author mentions a litelc after, whereby be will matio the fame charge of air to ferve for the difcharge of leve.ral arrows or bullets after one anctier,

154 Diedulur; or, Lib. II. nother, by giving the air only so much room,as may iminediately ferve to imprefs a violence in fending away the arrow or bullet, and then fcrewing it down again to iss former confinement, to fir it for another fhooting. But againft this shere may be many confiderable doubts, which I cannot frand to dilculs.

C A P. II.
Of a failingC̣hariot, flust may mizbowt horfes be dorven on stor land by the mind, as /hips are on the fea.
\(T\) HE force of wind in the motion of fails may be applied alfo to the driving of a Chariot, by which a man may fail on the land as well as by a Thip on the warer. The labour of horfes or other bealts, which are ufually applied couthis purpole, being artificially fupplied by che ltrength of winds.

That fuch Chariots are commonly uled in the Champain plains of Chins?

De incremenio Urbium, 1.1. co.
is frequently affirmed by divers credible tuthors. Sozerus mentions, that they have been rricd alfo in Spsin, though

Cap. 2. Mech.mical Motions. though with what fuccefs he doth not fpecific. Bur above all orher experi. ments to this purpofe that faiting Chayiot at Seesulug in Holland, is more eminently remarkable. It was made by the direttion of stephenus, and is cele. brated by many Auchors. *W alcbivs affirms it to be of fo great a fwiftaeff for its motion, and yet of fogreat a capacity for its burden. Ut in medio freto/isusndis ventis scmmiffra naves, velocitate multis parafengis poft fe relinguat, dr pas:caram borarum /potio,vigintisuat trigisusa melliarta Germanica continuo curfa emesiesur, concredirofg; fibi plus misus vetfo: res fox aut dectm, in petisum locmm iramf. feraf, facillimo illius ad elavoum gui fedre nutu, guaqun verfum mstimo labare zelis cominiffum,mirabile hot continenri carrus. nazigzum dirigentis. That it did far es ceed the fpeced of any Ship, though we fhould fuppofe is to be carried in the open fia with never fo profperous wind: and that in fome few hours face in would convey 6 or to perlons 20 or 30 German miles, and all this with very liste laberer of him that fitceth at the

Stern, Stern, who may eafily guide the courfe of it as he pleafeth.

That eninent inquifitive man \(P_{\text {ej- }}\) reskins, having travelled to Scevelimg for the light and experience of this Charior, would frequenely afier with much wonder mention the exrreme fwiftnels of its motion. Commemor are
 Ta Pciref- ventosran/latms citatilfimo mon perfomifo kii, I. a. cere tamen,mempe tam citus craf quam eentus. Though the wind werc in it felf more fivift and ftrong, yet to paftengers in this Charios ir would not be at all dilcernable, becaufe they did go with un equal fwiftacts to the wind it felf. Men thit ran before it, feeming 10 go backwards; things which feem at a great diftance being prelencly oyertaken and left bahind. Intwo hours frace it would pafs from Sceveling to Putten, which are diftant from one another above if Horaria milliaria (Gaith the fame Author) that is, wore than swo and forty miles.
Cireties is very copious and elegant in the cilebrating of this invention, and the the Author ofit, in divers Epigrams.
somivolane Trphis deduxit maguara narim,

And in anorher place.
 Anperitw mave, fibliatit ille rotes?
- Standir agmer navis turrow ruit atri proso, Es merite ducer bic riviar. ulla تoras.
I hele relations did at the frift leem untome (and perhaps they will fo to others) fomewhat Itrange \& incredible. But upon farther enquiry I have heard them I'requently attefted from the parcicular eyefight and experience offuch eminent perions, whole names I dare not cite in a bulinets of this nature, which in thofe parts is fo very common, and little oblerved.
I have not met with any A urhor who doth tritat particularly concerning the manner of framing this Charior, though Grotius mentions an elegant defer?ption of it in copper by one Geywius : and Handius in one of his large Maps of Afia,does give another conje. Ctural defcription of the like Chariots uled in china.
The form of it is related to be very Gumple and plain, after this manner:

158 Dedalus \(_{3}\) or, Lib.II.

\section*{Cap. 2. Mrehanical Motions. \\ The body of it being fomewhat like} a boat, moving upon 4 whecls of ancqual lignefs, with two luils like thofe in a flip; there being fome contrivance to turn and fteer it by moving a rudder which is placed beyond the two hindmolt wheels: and for che ftopping ofit this muft be done either by letting down the fail, or curning ir from the wind. Of this kind they have frequentIy inHolland other little \(V\) cifels for one or two perfons to go upon the ice, having hedges inftead of wheels, being driven with a fail ; the bodies of them like little boats, that if the ice fhould break, they might yet lafely carry a man upon the water, where the fail would be Atil ulefulfor the motion of it.
I have often thought that it would be worth the experinuent ro enquire, whether or no luch a failingCharsor might not be more conveniently framed with moveable fials, whofe force may be impreft from their motion, equivalent to thofe in a Wind-mill. Their foremolt wheels \(i\) as in other Chariots) for the greater facility, being fomewhat lower than the other, anfwerable to this fig.

\section*{160}

Diedalus; or , Lib.II.

In which the fails are fo contrived, that the wind from any Coalt will have a force upon them to turn them abs:ut, and the motion of thele fails mult needs turn the wheels, and confequenty carry on the Charior it telf to any place (cloough fully againtt the wind) whirher ir fhall be directed.

The chief doube will be, whether in fuch a contrivance every litele ruggednels or uncvennels of the ground, will not caufe fuch a jolting of the Chariot as to hinder the motion of its (ails. Burthis perhaps (if it Chould prove (o) is capable of feveral remedie:

I have often wondred, why none of our Gentry who live near great Plains, and finvoth Champains, havo attempted any ching to this purpofe. The experiments of this kind being very plealanc, and not coftly. What could be more delightful or better husbandry, than to make ufe of the mond (which colts norhing, and ears noching) inttead of horfos? This being very ealie to be effected by thofe, M
she the convenience of whofe habisations doth accommodate them for fuch ex. periments.

\section*{C A P. III.}

Cancerning alse fixed Automata, Clocks, Spheres, reprefintiong she beavenly motions: The feveral. excellentics that are moft compmesdalle in fuch kind af somtrivancess.
MIIE fecond kind of iuriuata were deferibed to be fuch En. gines, as did receive a regular and lafting motion from fimething belonging to chcir own frame, whether weights, or 〔prings, Ert...

They are ulually diltinguifhed inco iurtipeaito,

Scaira; fixed and fationary iтtizurra, movable and eranfient.
1. The fixed are fuch as move ons ly according to their leveral parts,and not according to their whole frame; In which, though each wheel hath z diftingt rotation, yet the whole doth ftill remain unmoved. The chiefeft

Cap. 3. Mecbanical Motions. 163 kind of thete are the Clocks and Watches in ordinary ufe, the framing of which is fo commonly known by cvery Mechanick, that I fhall not trouble the Reader wish any explicacation of ir. He that defires fuller fatiffaction, may fee them particularly deferibed by * cardan, + D. Flood, and others.

The firlt invention of thefe (faith Pancirollws) wastaken from that ex. periment in the multiplication of whets mentioned in Votruvisu, where he Speaks of an initrument whereby a man may know how many miles or paces he dorl go in any fpace of time; whecher or no he do pals by water in a baat or hip, or by land in a Charior or Coach: they heve been conrrived alfo into little pocketinftruments, by which after a man hath walked a whole day together, he may cafily know how many fteps be bath taken. I forbear to enter upon a larger explication of thefe kind of Engines, becaufe they are impertinent unto the chief bufinels that

164 Dedalus; or, Lib. II. 1 have propofed for rhis difcourfe: The Reader may fec them more particulary defiribed in the above-cited place of lytravtes, in * Ciardan. \(\dagger\) Byf.
- Subrit.

4Thertrum in-frumencoturn. Waterade fictere. 1. rs.c. \(3=\) fontur, and others; I have hore only mennoned them, as being the firlt occalion of the chiceft cistruyzze that are now in ufe.

Of the fame kind with our Clocks and Watches (though perhaps more elaborato and fubtil) was that fphere Mrmons risci. cesto. TuFcul. Quaft. 1. s. inem De Nar. Devorum 1 . 2. invented by Archinedes, which did reprefent the heavenly motions: the diurnad and anmual courles of the Sun, the changes and alipetis of the Moon, ac. This is frequently celebrated in the writings of the Ancients. particulary in that known Episram of Clanlian:

Japiter in parvo cum cerncret ethera vitxo, Rilit, \& ad Superos talia dieta dedir;

\section*{- The fr.} rove force frmm shichtion mint488
 profac.

\section*{Cap. 3. Mechanical Motions.}

Penaurritproprium mentitusSignifer ammurti; Ec linaules novo Cyurha menfe tedit.
Jarigq Liumin volvcis audaxindultia mundit

Quid iolf infent cin touicru siltion:a num??
 Excellently Tranflated by T. Rasidepte.
 And henghing, to pho ght thele atrid cild polio 1 Comur shen the prosir of matral cation fof ar? in hririte botsory llikwert attiod arce.
 yid fape of Godis alhe Syraculian briags.

And -vosuing urw iur morh, buki nidufts.

fix a por, liand is mationi movaligromi, ,
Buc that this Engine foould he made of glafs, is fcarce credible. Lationtises mentioning the relation of it, affirms it to confitt of brafs. which is more likely. It may be the outfide or cafe was glafs, and the frame it filf of brafs. Cutiaus Rhodogrmus. fipealting of Antiq eft she wonderous art in the contrivance 1.2 .4, is . M 3 of

Indit 1.:
c. 5.

Gand U . bedimpors. ad suction.
calla. Mastery. prem. ad f. quite, Sone igitur miracnloram omswm maximum mirsculum oft bows? He might have laid \(A\) atitermaticus: And another to this puypole, Sic maws caus nsturan, wt matres ip fa manuf imp* tats putetur. Pappus tells us, that Archimetes writ a Book de Spherroparia, con. cerning the manner of framing fuck Engines; and after hin Pofidonizs compoled another cificourle on the fame Fubjed, though now either the ignorance or the envy of time hath deprized as of both thole works. And yer the art is 佔f is not quite perifoed; for we read of divers the like contri-

Di Your. Serthr.cep. 74.5660 . tutb.Li. Socrates 500, 217. Meant. impechan. Arificmon. f. 1.
pr. Hackwell. Api, I. 2. . . ja [a. pe visit Arabian H. vance iathele latter times. Agrippa affirms, that he himself had feer foch a Sphere; \& Rams is tels us how he beheld two of them in Pass, the one brought thither among other Spoils from Sicily. and the other our of Germany, And it is commonly reported, that there is yet Such a There at Strafe burgh in Germany. *Rivalrus relates how Marisus Burgefins, a Norman, ride two of them in France for the King.

\section*{Cap. 3. Mechanical Motions. \\ And perhaps thele latter (faith he)} were more exact than the former, becure the heavenly revolutions are now much better underfoot than before. And befides, it is queltionable, whether the ute of Atecl-fprings was known in thole ancient times; the application of which unto the le kind of spheres, muff needs be much more convenient than weights.
'This related alto of the Conful Boethius, that amongst other Mariematical contrivances, (for which he was famous) he made a fphere to reprefect the Suns motion, which was la much admired, and talked of in thole times, that Gumdibaldus King of Burgundy, did purpofely fend over Embafladors to Theodorices the Emperon, with intreaties that he would be a means to procure one of there Spheres from Boethius ; the Emperor thinking hereby to make his Kingdom more famous and terrible unto foreign Nations, doth write an Epistle to Boccethis, perfwading him to fend this inftrument. Qexoties non font creditors M 4 good

Coffoctor. Berimur. Prafiad Candler. CHild. quod viderint? Ruoties banc veritasem laforia fomnis putabumt? Et ganmdofuerint is lupare sowverff, mon ande. bunt fo aguales mobes aitcert, apud quos frums fapientes salian cogiraffr. So much were all thele kind of muentions ad. mired in thofe ruder and darker times; whereas the inflruments that are now in ufe amongft us (though nor fo much extolled) yet do altogether equal (if not exceed) the other both in ufefulnefs and fubtilty. The chief-
nosution and acin. wemsircuma L2, e. p. Ccedem. Smill. 17. eft of thefe tormer Engines receiving ibeir motion from weights, and nor from fprings, which (as l laid before) are of later and more excellent invertion.

The particular circumilances for which the Automats of this kind are moft eminent, may be reduced to thelt, four.
1. The laftingnefs of their morion, without needing any new fupply; for Which purpoferbere have been fome Watches contrived to cootinue with. out winding up for a week together, pr longer.

\author{
2. The
}

Cap. 3. Mechanical Mctions.
2. The eafinefs and fimplicity of their composition ; Art it fell being but the facilitating and contracting of ordinary operations; therefore the more eafie and compendious foch inventions ate, the more artificial fhould they be effected. And the addition of any fuch unneceflary parts, as may be Supplied lumenther way, is a fere Sign of unskillulnefs and ignorance. Thole antiquated Engines that did congift of fuck a ne:cilels multitude of wheels, and firings, and screws, (like the old hapothefa of the heavens) may be compared to the notions of a confuted howled, which are always full of perplexity and complicelions, and feldom in order; whicteas the inventions of Art as e more regular, fimple and perficicuous, like che apprehenfions of a ciftinct and thoroughly informed judgment. In this respect the manner of framing the ordinary -fatomata, lath been much bettered in there latter times above the former, and Shall hereafter perhaps be yer moore advantaged. There

Dcdulus; or, Lib. II.
Thele kind of experiments (like all ocher humane arts) receiving additions from every days experiment.

To this purpole there is an inver: tion conlifting only of one hollow orb or wheel, whereby the hours may be as truly diftinguifhed, as by any ordinary clock or watch. This wheel fhould be divided into feveral cavities, through each of which facceflively either fand or water mult be contrived to pals, the heavinefs of the fe bodie: (being always in the afcending fide of the wheel) mult be counterpoifed by a plummet that may be faltned about the pulley on the axis: this plummer will leifurely defcend, according as the fand by running our of one cavity into the next, dothmake the leveral parts of the wheel lighter or heavier, and lo confequently there will be produced an equal and lafting motion, which may be eafily applied to the diftinetion of hours.
3. The multitude and variety of thofe fervices for which they may

Cap. 3. Mechunical Mtetions.
be ufeful. tinto this kind may we refur thoke Watches, by whictra man may tull not gnly the hour of the day, but the misuse of the hour, the day of the month, the age and aSpeds of the Moon, \&x. Of this nature likowife was the Larum menioned by Walchins, which though it were burtwo or three inches big, yer would both wake a man, and of it felf light a candle for him at any fee hous of the night. And ihofe weights or fprings which are of fo grear force as to rurna Mill, (as fome Fib.g. have been contrived) may be eailly applied to more various and difficult labours.
4. The litelenels of their frame. Nunguam ars mayis quim im minionis mota ef (faith Aquimsi). The fmalnefs of the Engine doth much commend the skill of the artificer; to this purpole there have been Warches contrived in the form and quansity of a Jewel for the ear, whercthe friking of the minutes may conitantly whifper unto us, how our lives do lide

D: fubril. away by a fwift fucceffion. Curdin
1. 2 . itcm
1. 17. cellsus of a Smith who made a Watch in die Jewel of a ring, to be worn on the linger, which did fiew the hours, (mons folum faystad, fed bitis) not only by the hand, but by the finger too (as I may lay) by pricking it every hour.

\section*{CAP. IV.}

Of the movable and Gradient Ausomsta, repryfention the motions of living cr:artures, varions fownds of birds, or b:afts and fome of shem arriculate.

THus much of thofe Automata, Stationary.

The other kind to be enquired after, are thofe that are movable and tranfient, which are deferibed to befuch engines as m.jve not only according to their feveral parts, bur alfo accord. ing to their whole frames. Thefe are again diftinguifhable into two forts:

Cap. 4. Mechanical Motions:
1. Gradient.
2. Trolant.
1. The Gradient or ambulatory, are fuch as sequire fome bafis or bottom to uphold them in their motions. Such were thofe ftrange inventions (commonly attributed to D.cdalus) or telf. moving ftatues, which (unlefs they were violently detained) would of themfelves run away. * drifotie afGirms, that Daditas did this by puteing quick filver into them. But this would have been roo grol's a way for fo excellent an artificer ; it is morelikely that he did it with wheels and weighes. Of this kind likewife were \(V_{\text {ulcams }}\) Tropades, celebrated by Homer, that were made to move up and down the houle, and fight with one another. He might as well have conrrived them into Journey-men Itatues, cach of which with a hammer in his hand fhould have worked ar the forge.

But amonglt theic fighting images, that in Cardan may delerv, a men. tion, which holding in its hand a golden apple,beausified with many coltly

Itish. 18.
There
haw hess -
dfo charn
ast dircem
\({ }^{\text {p }}{ }^{\text {tho }}\)
forco of a
jpring
controued
vidbem
them
DeVaricr.
rtrum.
1. 12 c.ss.

Plato in Menanc. Arill. Poficl.ıc.3. - Di Animali.c. \(\mathbf{3}\) - Jewels ; if any man offered to take it, the fatue preficnty hot him to death. The touching of rhis apple ferving to dilcharge leveral fhor bow's, or other the like inftruments that were lecretly couched within the body of the image. By fich a treachery was King Cirennetus murdered (as Boethus relates).

It is fo commonan experiment in thefe rimes to reprefent the perfons and actons of any flory by fuch felf. moving images, that I hall not needto explain the manaer how the wheels Fab.g. and fprings are contrived within

Thery burve berm stifer it tyentiows
86 Brover onfly wor ;
Novigitm
fponce mobitere fuir retrigi; aurorem.
ficimmullo negotio, fuirb Scaliger, Ex erc. \({ }^{266}\). shem.

Among th thefe gradient Auromata, that lron spider mentioned in 10.1 chin., is more efpecially remarkable, which being bur of an ordinary big. neis, befides the ourward fimilitude, (which was very exast) had the fame kind of motions with a living fpider, and did creep up and down as il it had been alise. It muft needs argue a wonderful art, and accuratenefs, to contrive all the initruments requifite for fuch a mo.

\title{
Cap. 3. Mechanical Motions.
}
a motion in fo fmall a frame.
There have been alfo other motions contrived from Magnetical qualities, which will fhew the more wonderful, becaufe there is no apparent reafon of their motion, there being not the lealt contiguity or dependance upon any other body that may occafion it ; but it is all one as if they hould move up and down in the open air. Ger a glafs fiphere, fill it with fuch liquors as may be clear of the fame colour, immixable, fuch as are oyl of Tartar, and fpirit of wine: In which, it is eafic to to poife a lirtle globe or other flatue, that it hall fiwim in the center. Under this glafs fphere, there fhould be a Loadifone conecaled, by the motion of which, the fratuc (ha. ving a needle torched within it) will move up and down, and may be contrived to fhew the hour or fign. See fevcral inventions of this kind in Kir. cher de Arte Mannetuse, l. 2.

There have been fome artificial images, which befides their feveral poftures in walking up and down, have have been made alfo to give feveral founds. wherher of birds, as Larks Cuckoves, \&c. or beatt , asHares, Foxes. The voices of which creatures fiall be rendered as clearly and diltinctly, by thefe arrificial images, as they are by thole natural living bodies, which they reprefent.

There have been fome inventions allo \(w\) ich have bernable for the utterance of arriculate founds, as the fpea ing of cerrain words. Suchare Cal.Rhod. lome of the Egrptson Idols related fet Ans. to be. Such was the brazen head 1.: c. 17. M.alus Colloy. made by Fryar Bicon, and chat fatue in the framing of which stbertus Magnus beltowed thirty years, broken by Aqumns, who came to lee it, urpolely chat he might boaft, how in one minute he had ruined the labour of fo many years.

Now she ground and realon how thele lounds were concrived, may be worth our inquiry.

Firft then, for thole of birds or bealts, they were made from fueh pipes orcalls, as may exprefs the fe-

Cap. 4. Mechanical Motions.
veral tones of thofe creatures which are reprefented: thefe calls are fo commouly knowa and ufed, thar they need not any furcher explication

But now about articulate for:nds
 chius thinks it poffible entirely to prelerve the woice, or any wotdsfpoken, in a hollow trunk, ot pipe, and that this pipe being righty opened, the words will come out of it in the lame order wherein they were fooken. Somewhat like that cold Countrey; where the reoples difcourle doch freeze in the air all winter, and may be heard in the next Summer; or at a great thaw. Bur this conjecture will need no refuration.

The more fubtantial way for fockld a difcovery, is by marking how nature leer felf doth employ the feveral inftruments of fipeech, the tongue, lipm; throxt, teeth, \&e. to this purpofe the Hebrews have alfigned each letter unto irs proper inftrument. And befides, we fhould obferve what inarticulare founds do refemble any of

Baym
Nar. Hin. Exper. 199 200.

Trad. de Magnetis propriepu. tibus. note the erembling of water to be like tha letter \(L\), the quenching of hot things to the letter \(z\), the found of Arings, unto the letter Ng , the jirking of a fwiech the lerter Q \&c. By an exact oblervation of thele particulars, it is (perhaps) poffible to make a ftatue fieak fome words.

\section*{CAP. V.}

Carcernjing the pasficility of framaing an Ark for fubmarine Navigution. The difficulties and comveniences of fuch - coserivance.

T will not be altogether impertinent uato the difcource of thele gradient Autonaths, to mention whar i/cer fonnesdoth to largely and pleafantly defcant upon, concerning the making of a Dhip, wherein men may fifely fwim under water.

That fuch a conerivance is feafible and may be effected, is beyond all queftion, becaufeis hath been alrea-

Cap. 5. Mechantical Motions. dy expecimented here in Eagh/ard by Corrut luas Dreble; but how to ithprove it unto publick ufe and advantage, fo as to be ferviceable for remore voyages, the carrying of any confiderable number of men, with provilions and commodities, would be of fuch excellent ufe as may deferve fome further inquiry.

Concerning which there are two things chiefly confiderable:
many difficulties with their

\section*{The remedies.} Egreat conveniences.
x. The difficulties are generally re: ducible to thefe ethree heads.
1. The letring out, or recciving in any thing, as there fhall be occafion, without the admifion of water. If is have nor fach a convenience, thefe kind of voyages mult needs be very dangerous and uncomfortable, both by reafon of many noifom offenfive things, which Thould be chruft out, and many orher needful things, which Chould be recerved in. Now hercin will confift the difficulty, how to con- trive the opening of this Veffel Io, that any thing may be ! ut in or out, and yet the water not rulh into it with much violence, as is doth ufually in the leak of a fhip.

In whi h cafe this may be a proper remedy : Ice chere be cerrain leather bags made of feveral bigneffes, which for the matter of them hould be both tract uble for the ule and managing of them, and frong to keep out the water ; for the figure of them, being long and open at both ends. Anfwerable cothele, let there be divers windows, or open places in the frame of the lhip, round the fides of which one end of thele bags may be fixed, the other end coming wishin the fhip being to open and chut as a purfe. Now if we fuppole a this bag thus faftned, to be syed clofe abour rowards the window, then any thing that is to be fent out, may be fafely put imo that end within the Chip, which being again clote fhut, and the other end loolened, the thing may be fafely fent our withour the admiffion of any water.

So again, when any thing is to be taken in, it mult be firft received into that part of the bag cowards the window, which being (afier the thing is within it) clofe tyed about, the other end may then be lafely opensd. It is cafie ro conceive, how by this means any thing or perfon may be fent our, or received in, as there thall be occafion; how the water, which will perhaps by degrees leak inro fevcral parts, may be emp:ied out again, with divers the like advantages. Though if there fhould te any leak at the bottom of the Veffel, yet very little water would get in, becaufe no air could get out.

2 The fecond dificulcy in fuch an Ark will be the motion or fiximg of it according to occation ; The directing of it to leveral places, as the voyage fhall b-defigned, withour which it would be very ufelefs, if it were \(t 0\) remain only in one place, or were to remove only blindfold, with:ut any certain direftion; And the contrivance of this may feem very diffi \(\mathrm{N}_{3}\). cult, gators will wane the ufiual advantages of winds and rides for, morion and the fight of the heavens for direction.

But thele difficulties may. be thus remedied; As for the propreffive unotion of it, this may be effected by the help of feveral Oars, which in the ourward ends of them, tha:! be like the fins of a fifh to coneralt and dilage. The paffage where they are admitted into the thip being tyed about with, fuch Leather bags (as were mencioned before) to keep out the water. It will not be convenient perhaps that the motion in thefe voyages fhould be very fwift, becaufe of thole oblervations and difcoveries to be made at the bottom of the Sea, which in a litte face may abundantly recompence the llownefs of its progrefs.

If this Ark be foballaft as to be of equal weight with the like magnitude of water, it will then be eafily movable in any parc of it.

As for the afcems of it, this may be eifily contrived, if there be fome great weight

Cap. 5. Mechanical Motions. weight at the bortom of the fhip (be: ing part of irs ballaft) which by fome cord within may be loolined from it; Asthis weight is ler lower, fo willthe fhip afcend from it (if need be) to the very furface of che water; and again, as it is pulled clofe to the hip, fo will it defcend.

For direltion of this Ark, the Mari-' ners needle may be ufeful in refpeta of the latisude of places; and the courfe of this hlip being more regular than others, by reafon it is nor Gibjet to Tempefts or unequal winds, may more cerrainly guide them in judging of the Lomgitude of places.

3: But the greateft difficulty of all will be this, how the air may be fupplied for refpiration: How conftant fires may be kept in it for light and thic dreffing of food ; how thofe viciflicudes of rarelaction and condentation may be maintained.

It is obferved, that a barrel or cap, whofe cavity will contain eight cabical feet of air, will not fervé'z Urimator or Diver for refiration, a\(\mathrm{N}_{4}\) bove bove one quarter of an hour: the breath which is ofeen fucked in and our, being to cor"upted by the mixcure of :apours, .at Nature rejects it as unferviccable. Now in an hour a mann will need at leaft 36- relpirations, betwixe evary one of which rhere fehall be solecond minures, and confequenrly a great change and fupply of air will be necellary for many perfons, and any long fpace.

And to likewife for the keeping of fire; a clofe Veffel containing ten cubical fect of air, will not fiffer a wax candle of an ounce to burn in it above in hour before it be luffocated, though this proportion (laith Mrefrmyws) doth not equally incriafe for feveral lights, becaufe four flames of an equal magnitude will be kept alive the face of 18 fecond minutes; though ane of thefe flames alone in the fame Veffel will not laft above 25 , or at moft 30 leconds, which may be cafily tried in large glafs borties, having wax candles lighted in them, and with their mouths inverred in water.

Cap s. Mechanical Motions.
For the rofolution of this difficulty, thi ugh I will not fay that a man may by cultorie (which in other things doth produce fuch Atrange incredible efects) be inabled to live in the open warer as the fifhes do, the inlpiration and expiration of water frving inftead of air, this being ufu. al uisth many fifhes that have lungs; yer it is cerrain that long ufe and cufome may ftrengthen men againft many fuch inconveniences of this kind, which to unexpericoced perfons may prove very \(h\) zardous: and fo it will not perhaps le unto thele fo ncceflary, to have the air for breathing fo pure and defecared as is required for others.

But further, there are in this calo thefe three things confiderable.
x. That the Veffel it felf fhould be of a large capacity, that as the air in it is corrupted in one part, fo it may be purified and renewed in the other: or if the meer refrigeration of the air would fit it for breathing, this might be fomewhat helped with bellows, tion.
2. It is not alrogether improbable, that the lamps orifires in the middle of it, like the reflefted beams in the firt Region, Rarefying cheair, and the circumambient coldnefs rowards che fides of the Velfel, flike the fecond Region, cooling and condenfing of ir; would make fuch i viciffitude and chinge of air, as mighr fic it for all its proper ufes.
2. Or if neither of thele conje@tures will help, yet Merfonims tells us in another place, that there is in Frante one Barrucus a Diver, who hath lacely found out anocher art, whereby a man might earily continue under water for fix hours together ; and whereas ten cubical feet of air will not ferve another Diver to breathe in, for half an hour, he by the help of a cavity, not above one or nwo foor at moft, will thave breath enough for fix hours, and a lanthorn fearce above the ufual fize to keep a candle burning as long as a man pleafe, which

Cap. 5. Mecbanical Motions. (if it be true, and were commonly known) might be a (ufficient belp \({ }^{2}\) gainft this greateft difficulty.

As for the many advanrages, and conveniences offuch a contrivance, it is not eafie to recite them.
1. 'Tis prizuse; a man may thus go. to any coaft of the world invifibly, withour being difcovered or prevented in his journey.
2. 'Tis \(/\) afe ; from the uncertainty of \(T\) ides, and the violence of Tempeffs, which do never move the fea above five or fix paces deep. From Pirates and Robbers which do fo infeft acher voyages; from ice and great frofts, which do fo much endanger the palfages towards the Poles.
3. Ic may be of very grear advantage againt a Navy of cremics, who by chis means may be undermined in the water, and blown up.
4. It may be of a feecial ufe for the relief of any place that is befieged by water, to convey unto them invifible fupplies:and fo likewife for the furprifalof any place that is acceffible by water.
5. It for fubmarine experimentsand dicoveries: as,

The feveral proportions of fwifrnefg betwixt the afcent of a bladder, cork, or any ocher lighe fubitance, in eomparifan to the defent of fones or lead. The deep caverns and fubterraneous pafliges where the feawater in the courfe of its circulation, doth vent is Celf into ocher places, and the like The nature and kinds of finhes, the feveral aris of carching thern, by alluring thern with lights, by placing divers nets abour the fides of this Velfel, fbooring the greater fort of them with guns, which may be put our of the thip by the help of fuch bags as were mentioned before, with divers the like artifices and treacheries, which may be more fucceffively pratified by fuch who live to familiarly together. Thefe fifh may ferve not only for food, but for fewel likewife, in refpect of that oyl which may be extraGed from them; the way of dreffing mear by lamps,being

Cap. 5. Michanical Motions. ing in many refpelts the moft convenienc for fuch a voyage.

The many frefh fprings that may prodably be met with in the bottoom of the fea, will lerve for the fupply of drink and other occa fions.

But above all, the dilcovery of fubmarine creafures is mort elpecially confiderable, not only in segard of what hath been drowned by wrects, but the feveral precious things that grow thére, as Pearl, Coral Mints, with inuumerable other chings of great value, which may be much more eafily found our, ard facilr up by the helpoit this, than by any other ufual way of the Urinators.

To which purpole, this great Veffel may have fome leffer Cabirs tyed about it, at various diftances, wherein feveral rerfons, as Scouts, may belo 'ged for the taking of obfervations, aecording as the Admiral fhall dirett them. Some of tiem te. ing frequendy lenr up en the furface of the water, as there flall be occafion.

All kind of arrs and manufactures may be exercifed in this Veffel. The oblervations made by ir, may beboth written, and (if need were) printed here likewife. Several Colonies may thus inhabit, having their Children born and bred up withour the know. ledg of land, who could not chufe but be amazed with ftrange conceits upon the difcovery of this upper world.

I am nor able to judge what other advantages there may be fuggefted, or whetber experiment would fully anfwer tothefe notional conjeđtures. Bur however, becaufe the invention did unto me feem ingenious and new, being not impertinent to the prefent enquiry, therefore I thought it might be worth the mentioning.

C A P.

Cap. 6. Mecb.anical Motions.

\section*{G A P. VI.}

Of the volum Antomats, Archytas his Door, and Regiomontanus his Eagle. The pofibility and great uffentsefs of fuction imventions.

\(T\)HE volant or fiving Ausomnts, are fuch Meclanical contrivances, as have a felf-mocion, whereby they are carried aloft in the open air, like the flight of Birds. Suchwas that wooden Dove made by Archreas, a Citizen of Tarestam, and one of Plato's acquaintance. And that wooden Ea. gle framed by Regomontasus at No. remberg, which by way of triumph, did fly out of the City to meet Charks the fifth. This later Author is alfo reported to have made an iron Fly, \(2 \%\), exartificis manu egreffo, convivas circumroutitac:ir, s.indimq e velati defeffs in Dommi manus reverfs eff, which when he invited any of his friends,

Diog Laeril. 8. PexCrinitos dehoneft. difci. 1.7cis. Ramus Schal.Mathem. \(1,2\). Duburtas. 6 daysin. 7. Dre \(P_{r \text { r.jace so }}\) Eustid. would fly to each of them rount the table, and at length (asbeing weary) return unto its Malter.

Dcedalus; or, Lib. IL

Devarice. rerum lib. 12.c.sg.

Cardan feems to doubr the polfibility of any fuch contrivance; his reaCon is, becaufe the initruments of is mult be firm and ftrong, and confequendy they will be too heavy to be carried by their own force ; but yer (faith he) if it be a little hetped in the firlt rifing; and if there be any wind to affift it in the flight, then there is nothing to hinder, but that fuch motions may be poffible. So that he dorh in effett grant as much as may be fufficient for the truth and credic of thofe ancient relations; and to diftruft them without a ftronger argument, mult needs argue a blind and perverfe increduliry. As for his objection conccrning the heavinels of the materials in fuch an invention, it may be anfwered, That is is eafie to contrive fuch forings and other inftruments, whofe ftrength hall muchexceed their hewincls. Nior can he Shew any caule why thefe Mechanical motions may not be as Atrong, (though nor folatting) as the natural ftrengeh of hiving creatures.
Scaliger

Cap. 6. Mechanical Motions. 193 Scaligerconccives the framing of fuch subtil: volant Automata, to be very calie. Exercir. Volamis columb.e machomulam, cujus autorem Archytam tradunt, vel fuillime profiteri atuica. Thofe ancient motions Nof. At. were thought to be contrived by the zici.1, to. force of fome iacluded air: So Gellius, cap. 12
 sura dpintous intilus a atque occults con/ia finfrange tum, dre. As if there had heen forme an wimemlamp, or other fire within it, which bef fyert might produce fuch a forcible rarefa- Ressibhor. Etion, as hould give a motion to the rens a fid whole frame.

Richan.
But this may be better peiformed Magnete by the ftrength of fome fuch (pring 1.2 par. 4: as is commonly ufed in Watches; this duth poro fpring may be applied unto one nufor wheel, which fhall give an equal marfe motion to both the wings; thele concrwings having unto each of them a- ing thefe nother finaller fipring by which they invemitums may be contracted and lifted up: So in matber that being forcibly depreffed by the wouks ise Itrength of the great and ftronger fykt 0 . fpring, and lifted up again by the o- dipus at- \(^{\text {a }}\) thertwo; according to this fuppo- syptiacus. fitien
fition, it is eafie toconceive how the motion of flight may be performed and continued.

The wings may be made either of feviral fubfanges jorned, like the feachers in ordinary fowl, as Dekalus is fcigned tocontrive them, according to that in the Pcer,
Orid Mcm. 1. 8.
-- Ignotiss animum dimittit in artes, Natar angut novat, nam ponit in ordine peinnus
Aminimo capt.cs lonzam breviore faquente,
Us elivo cruvilfi putes, Ors.
Or elfe of one conionuste fubfoance, like thofe of Bacs. In framing of both which, the beft guidance is to follow (as near as may be) the direction of nature ; this being bur an im tation of a natural work. Now in borh thefe, the ftrength of each part is proportioned to the force of its imployment. But norhing in this kind can be perfectly determined withour a parcicular trial. Though the compofing of fuch motions may be a fulficient reward to any ones induftry in the fearching

Cap. 6. Mechanical Motions.
after them, as being in themfelves of excellent uriofity; yet there are fome other inventions depend upon them, of more general benefit and greater importance. For if there be any fuch arificial contrivances thar can lly in the air, (as is evident from the former relations, rogether with the grounds here fpecified, and I doubt not, may be eafily cffected by a diligent and ingenious artificer, then it will clearly follow, that it is poffible alfo for a man to hy himfelf: It being cafic from the lame grounds to framie an inltrument, wherein any one may fit, and give fuch a motion unto is as Thall convey him aloft through the air. Than which there is not any imiaginable invention that could prove of greater benefic to the world, or giory to the Author And therefore it may juftly deferve their enquiry, who have both leifure and means for fuch experiments.

Bur in thefe practical ftudies, unlefs a man be able to go to the tryal of things, he will perform but 0 \%
istle.
little. In fuch matters,
Horace. -Studinms fine divite versí, (asthe Poct faith) a general fpeculation, withour particular experiment, may conjecture at many things, but can certainly eifcet nothing. And therefore I hall only propofe unto the woild, the Theory and general grounds that may conduce to the eafie and more perfect difcovery of the fub. jest in queftion, for the encouragement of thofe that have both minds and means for fuch experiments. This fame Scholars fate,
Y:
Res aponfos dmi, and
-curcafuptlex
is that which hinders the promoting of learning in fundry particulars, and robs the world of many excellent in. ventions. We read of Arifotle, that he was allowed by his Pupil Alexand \(r\) 8:o talents a year, for the payment of Fifhers, Fowlers, and Hiunters, who were to bring him in feve. ral creatures, that foby his particular experience of their parts and difpofitions, he might be more fitly prepared

\section*{Cap. 6. Mechanical Motions.}
pared to write of their natures. The realon why the world hath nor many Ariflotkes is, becaule it hath fo few Alexanders.

Amongt other impediments of any ftrange invention or artemprs, it is none of the meaneft difcouragements, that they are fo generally derided by common opinion, being elteemed only as the dieams of a melancholy and diftempered fancy. Eufibius lipxaking with what necefficy every thing is confined by she laws of narure, and the decrecs of provider:ce, lo that nothing can go out of that way, unto which naturally it is defigned; as a fifh cannot refide on the land, sor a man in the water, or aloft in che air, infers that therefore none will venture upon any fuch vain attempr, as
 тe \(\dot{\alpha} v\) teernems, unlefs his braintea lit. tle crazed with the humour of melancholy: whercupon he adviles that we fhould nor inany particular endeavour to tranfgrels the bounds of nature,接 03

Contralifi-crocl.confut. I. 1

Thnvã \%hroblver, and fince we are naturally deftitute of wings, not to imitate the flight of Birds. That faying of the Poct,

Demras qui wimbas ór non imisabile

hath teen an old cenfure applied unto fuch as ventured upon any ftrange or incredible attempr.

Hencemay we conceive the reafon, why there is fo little insimation in the writings of antiquity, concerning the poffibility of any fuch invention. The Ancients durft not fo much as mention the art of flying, but in a fable.
Dedalus, ut fama eff, fanieus Minoia regna,
Prepetibus pennis aufus fe credere calo, Infurtum per irer gelid.us emarvit ad ardos, 8 co.
It was the cuftom of thofe former ages, in their overmuch gratitude, to advance the firf Authors of any ufeful difcovery, amongtt the number of their gods. And Dedalus bejing fo famous amongft them for fundry

Cap. 7. Mecbanical Motions.
fundry Mechanical inventions (elpecially the fails of (hips) though they did not for chefe place him in the hedvens, yet they have promoted him as near as they could, feigning him to fly aloft in the air, when as he did but fy in a fwift Chip, as Diodorus relates the
so Eufcbius tor. Hiftorical truth, on which that fition is grounded.

\section*{C A P. VII.}

Concerning the Art of firing. The feveral ways wbirtby thes bath been, or may be atsempted.

THave formerly in two other* Difcourfes mentioned the porfibility ot this art of Rying, and intimated a further inquiry puto it, which is a kind of cogagement to fome fuller difquifitions and conje \({ }^{\text {a }}\) ures to that purpole.

There are four feveral ways whereby this flying in the air, hath been or may be attempred. Two of them by the frength of ocher chings, and \(\mathrm{O}_{4}\) two two of them by our own firength. 1. By Spirits or Angels.
2. By the help of fowls.
3. By wings faltned immediately to the body.
4. By a flying Charior.

2anch. do oper. pirs 1.1. 4.
- 2 Kimg 1.18.
+ Afs 8. 39.

Dnex. \(A\) pri. 19.
tuke 4.

Eraflusde Larnis.

Hin Ind
\(1.7{ }^{1}\) c. 26.
1. For the firlt, we read of divers that have paffed fwiftly in the air, by the help of Spirits and Angels, whether good Angels, as* Elise was carried into heaven in a fiery chariot: as \(\dagger\) Philip was conveyed to Azotus, and Habntkuk from jewry to Babylon, and back again immediately: Or by evil Angels, as our Saviour was carried by the Devil to the top of a high mountain, and to the pinacle of the Temple. Thus Witches are commonly related to pafs unto their ulual mectings in lome remore place; and as they do fell winds unto Mariners, folikewife are they fometimes hired to carry men fpeedily through the open air. Aspfa affirms, that luch !ind of paflages are ulual amonglt divers Sorcerers with the Indinns as this day.

Cap.7. Nechanical Morions. 201
So Kepler in his Aftronomical dream doth fancy a Witch to be conveyed unto the Moon by her Familiar.

Simon Mapis was fo eminent for miraculous Sorceries, that all the people in Simati, from the leaft to the greatelf, dideltcem him es she grest poser of God. And to famous was he at Rome, that the Emperour ereted a ftatue to hin with this Infcriprion, Simoni Deo Stritto. 'Tis ftoried of this Magician, that having challenged Saine Peter to do Miracles with him, he attempted to fly from the Capitol to the Aventinc Hill. Put when he was in the midft of the way, SaintPetcrs prayers did overcome his Sorceries, and violently bring him to the ground, in which fall having broke his thigh, within a while after he dyed.
- But none of all thele relations may conduce to the dilcovery of this experimene, as it is here enquired after, upon matural and artjficisl grounds.
2. There are orhers who have veyed through the air by the help of Fowls; to which purpore that fittion of the Ganti's, is the molt pleafant and probable. They are fuppofed to be great fowl of a ftrong lafting flight, and eafily tamable. Divers of which may be fo brought up, as to joyn rogether in carrying the weight of a man, fo as each of them Shall partake his proportionable thare of the burden; and the perfon that is carried may by certain reins diredt and fteer them in their courfes. However this may feem a ftrange propofal, yer is is not certainly more improbable, than many other arts, whercin the induftry of ingenious men hath inltrulted thefe brute crea. tures. And I am very confident, that one whofe genius doth enable him for luch kind of experiments, upon leifure, and the advantage of fuch helps as are requifite for various and frequent trials, might effect fome Itrange thing by this kind of enquiry.

TI's seported as a cultom amongit

Cap. 7. Mechanical Motions.
the Lencations, that they were wont upon a fuperftition to precipitate a man from fome high cliff inco the Sca, rying about him with ftrings at fome diftance, many great fowls, and fixing unto his body divers fearhers firead so break the fall; which (faith the learned Bacon, if it were diligently and exactly contrived) would be able to hold up, and carry any proportionable weight ; and therefore he advifes others to think further upon this experiment, as giving fome light to the invention of the art of flying;
3. \({ }^{\text {'Tis the more obvious and com- }}\) mon opinion, that this may be effe?ted by wings faltaed immediately to the body, this coming neareit to the imitation of Nature, which fhould be obferved in fuch attempts as thele. This is that way which Fredericus Hermannus in his little diliourle \(d\) : Arre volandi, doch only mention and infitt upon. And if we may trult credible fory, it hath been frequently attempted, not without fome liccels.
so tic ancime Rni. tigh Bhe. Andis.
'Tis related of a certain Englifh Emenflus Monk calied E/merus, abour the CionButgrovus inPanoplis PhyficcVultania. Siturmius in Lar lingur refolue

Aflom chaly.
Porr. 7.
Sett. 1 Mem. 3 . felfor's time, that he did by fuch wings fly trom a Tower above a furlong; and fo another from Saint Marks fteeple in Venice; another atNurimberec; ; and Busbeguizs Speaks of a Turk incomfantimple, who attempeed fomething this way. Mr. Burson mencioning this quotation, doth believe that fome new-fangled wit ('ris his Cynical phrale) will fome time or other find out this art. Though the truth is, moft of thefe Artifts did unfortunately mifcarry by falling down and breaking their arms or legs, yer that may be inpured to their want of experience, and too much fear, which mult needs polfels men in fuch dangerous and frange atremprs. Thofe things that feem very difficule and forful at the firf, mav grow very facil after frequent trial and exercile. And therefore he that would effect any thing in this kind, mult be brouglit up to the conitant practice of it from his yourh. Trying

Cap. 7. Mechamicil Motigns. 205 ing firt only to ufe his wings in ruming on the ground, as an Eftrich or tame Geefe will do, toteching the carth with his toes; and fo by degrecslearnto iffe higher, till he flall attain unro skill and confidence. I have heard it from credible teftimony, that one of our own Nation hach proceeded fo far in chis experiment, hat le was able by the help of wings in fiuch a running pace, to fep conflantly ten yards at a time.

It is not more incredible, that frequent practice and cuftom fhould inablea man for this, than for many orher things which we fee confirmed by experience. What frange agility and attivenefs do our common tumblers and dancers on the ropeattain to by continual excrcife? ' Iis related of certain Irdiens, that they are able when a horle is running in bis full carcer, to ftand upright on his back, to turn themlèves round, co leap down,gathe. ring upany thing fromithe ground, and immediately to leap up again, to hoot exacaly at any mark, the horfe not intermitting

Maffers Hill Ind I. 1. two horfes togerher, the man letting one of his fiet upon each of them. Thefe things may feem impoffible to others, and it would be very dangerous for any one to attempt them, who hath not firlt graduallv attained to thefe arts, by long practice and trial ; and why may not fus li practice enable him as well for this orher experiment, as for thele things?

There are orhers who have invented ways, to walte upon the water, as regulariy and as firmly as upon the land. There are fome fo accultomed to this element, that it hath been almolt as natural to them, as to the fifh; men that could remain for above an hour together under water. Pontannes mentions one who could fwim above a hundred miles cogether, fromone Shore to another, with great fpeed, and ar all times of the year. And is is ftoried of a certain young man, a

Truatsfe of cofiam. Sicilian by birth, an la Diver hy profeffion, who had fo continually ufed himiclf to the water, that he could

\section*{Cap. 7. Mechanical Motions.
not enjoy his health out of it. If at} any time he flaid with his friends on the land, he fhould be fo tormented with a pain in his fomack, that he was forced for his health to return back again to Sea, wherein he kept his ufual refidence; and when he faw any Ships, his cuftom was to f wim ro them for relief, which kind of life he continued cill he was an old man, and dyed.

I mention thefe things, to thew the great power of praCtice and cuftom, which might more probably fucceed in this experiment of flying (if it were but regularly attempred) than in fuch frange effects as there.

It is a ufual practice in thefe times, for our Funsmbulones, or Dancers on the Rope, to attempt fontewhat like to flying, when they will with their heads forwards flide down a long Cord extended; being faftned at one end on the top of fome high Tower, and the other at fome diftance on the ground; with wings fixed to their choulders, by the fhasing of which they they will break the force of their defecent. It would teem that fome attempts of this kiad were ulually amonglt the Roman:. To which that -Degub. exprelfion in * Salvias may refer, Dei I 6. where aniongt other publick fhews of the Theater, he mentions the \(P_{e}\). Annor, in tuminarsi: which word ((aith 7o.Brafsilv. ficamus) is licarce to be found in any other Author, being not mentioned either in Falums Pollux, or Potitian. 'Tis probably derived from the Greek Wral mitradou, which riguities to tly, and may refer to fuch kind of Ropedinuers.

Bur now becaufe the arms exten. ded are bur weak and eafily wearied, thereliorerhe motions by them are like tobe but fhort and flow, anfiverable irm.y se to the flight of fuch domeftick fowl, as are moft converfant on the ground, which of themfelves we fec are quickly weary, and theretore much more would the arm of a man, as being nor naturally defigned to fuch a morion.

It were therefore worth the inqui-

Cap. 7. Mechanical Motions.
ry to confider whetber this might not be more probably effected by the la. bour of the feet, which are naturally more ftrong and indefatigable: In which contrivance the wings fhould come down from the fhoulders on each fide as in the other, but the motion of them fhould be from the legs, being thruft out and drawn in again one atter anocher, fo as each leg fhould move both wings, by which means a man fhould (as it werc) walk or climb up into the air: and then the hands and arms might be ar leifure to help and dirett the motion, or for any other fervice proportionable to their ftrength. Which conjefture is not without good probability, and fome fpecial advantages above the other.
4. But the fourth and laft way fcems unto me altogether as probable, and much more uleful than any of the reft : And that is by a dying Chariot, which may be fo conerived as to carry a man within ir ; and though the ltrength of a fpring might per- haps be ferviceable for the motion of this engine, yet it were betrer so have it affifted by the labour of fome intelligent mover, as the heavenly Orbs are fuppofed to be turned. And thercfore if it were made big enough to carry fundry perlons together, then each of them in their feveral turns might fucceflively labour in the caufing of this motion; which thercby would be much more conftant and lafting, than it could otherwife be, if it did wholly depend on the ftrength of the fame perfon. This concrivance being as much to be preferred before any of the other, as lwimming in a hip before fwimming in the water.

\section*{CIA P. VIII.}

A refolation of the tro chief diffoculities shat fecm 10 oppofe the pa/fibility of a flying Cbsriof.

\section*{THE chicf difficulues againft the poffibility of any fuch contriyance, may be fully removed inthe refolution}

\section*{C2p. 8. Mechanical Motion
folution of thefe two Rneries.}
1. Whether an engine of fuch capacity and weight, may be fupporred by fo thin and light a body as the air?
2. Whecher the ftrength of the perSons within, it may befufficient for the morion of it ?
1. Concerning the firft; when Callias was required by the men of armerint. Rhodes, to take up that great Helepo- 10. ©. 22 . Lis, brought againft them by Demetrius, (as he had done before unto fome lefs, which he himeeff had made) He anfwered, that it could not bedone. Nomsulla enim fune qua in excmplaribus videntur fimilia, cumanstetm rrefore ceperunt, dilabumerar. BeSo Remme sochel. acscaufe thofe things that appear probable in lefer models, when they are encreafed to a greater proportion, do thereby exceed the power of art. For example, though a man may make an inftrument to bore a hole aninch wide, or half an incle, and fo lefs; yet to borea hole of a foot wide, or two foor, is not fo much as to be \(\mathrm{P}_{2}\) ctiought thought of. Thus though the air may be able to uphold fome leffer bodies, as thole of birds; yer when the quantity of them is encreafed to any great extenfion, it may julliy be doubted, whether they will not exceed the proportion that is naturally required unto fuch kind of bodies.

To this I anfiver, That the engine can never be too big or too heavy, if the fpace which it poffeffes in the air, and the morive-faculty in the inftrument he anfurerable to iss weight. That faying of Callises was bot a groundiefs fhift and cuation whereby he did cndeavour to palliate his own igroorance and dilability. The urmoft truth which feems to be implied in it, is this: That there may be fome bodics of fogreat a bignefs, and gravity, that it is very difficult to apply fo much force unto any particular inftrument, as fhall be able to move them.

Againft the oxample, it may be affirmedand eafily proved, that it is \(e\) qually polibile to bore a hole of any bignels,
bignels, as well great as little, if we fuppole the initrument, and the Arength, and the application of chis ttrength to be preportionable; Buc becaule of the difficulty of thele concurrene circumitances inchofegreater and more unufual operarions, therctore do they faldy feem to be abfolutely impoffible.

So that the chief infirence from this argument and example, doth imply only thus much, that it is very difficult to contrive any fuch motive power, as fhall be anfwerable to the greanefs and weight of fuch an inftrument as is here difcourfed of, which doch nor at all iunpair the rruch to be maintained; For if the pollibili. ty of fuch a motion be yeilded, we need nor make any fruple of granting the difficulty of it; It is this mint add a glory to the invention; and yet this will not periaps feem fo very difficule to any one who hatb but diligently oblerved the llighe of fome other birds, parcicularly of a Kite, how he will furimup and down

214 Dedalus; or, Lib. II.
in the air, fomerimes at a great height, and prelently again lower, guiding himfelf by his train, with his wings extended without any lenfible motion of them; and all this when there is only fome gentle breath of air ftirring, without the help of any Atrong forcible wind. Now I fay, if that fowl (which is none of the ligheet) can fo very cafily move it felf up and down in the air, without fo much as ftirring the wings of it ; certainly then, it is not improbable, but that when all the duc proportions in fuch an engine are found out, and when men by long practife have arrived to any skill and experience, they will be able in this (as wellas in many other things) to come very near unto the imitation of nature.
smmar. 24. 2.

As it is in thole bodies which are 4. 2 C : carried on the water, though they be never fo big, or fo ponderous, (fuppofe equal to a City or a whole Ifland) yet they will always fwin on the top, if they te but any phing lighter than fo much water

\section*{Cap. 8. Mechamical Motions.}
as is equal to them in bigncels: So likewife is it in the bodics that are carritd in the air. It is not their grearnelf (though acver fojmmenfe) that can hinder their being fupported in that light element, if we fuppote them to be extended unto a proportionable face of air. And as from the former experiments, Archimsides hath compoted a fubcil foience in his Book, De infidemestuas bumido, concerning the weight of any heavy body, in reference to the water wherein it is: So from the particular trial of thefe other experiments, that are here inquired after, it is polible to raife a new fcience, concerning the extenfion of bodies, in comparifon to the air, and motive faculies by which they are to be carried.

We fee a great difference berwixt the feveral quantities of fich bodies as are commonly upheld by the air; not only little gnars, and flies, but alfo the Eagle and other fowl of valter sumbiti,ion magnitude. Cardaa and Scaloger do unanimoully affirm, that chere is a
\[
P_{4}
\]

216 Dedalus; or, Lib.II. bird amongft the Indians of fo great a bignefs, chat his beak is often ufed to make a fheath or ficabbard for a fword. And Acoffa tells usof a fowl in Pers called Candores, which will of themfelves kill and eat upa whole Calf at a time. Nor is there any reafon why any other body may not be fupported and carried by the air, though it fhouldas much exceed the quantity of chere fowl, as they do the quantity of a dy.
Martenu Polus mentions a fowl in Mredgenfear, which he calls a Ruck, the fathers of whofe wings are 12 pa ces, or threefiore foot long, which can with as much eafe foop up an Ele. phant, as our Kites do a Moufe. If this relation were any thing credible, ir might ferve as an abundant proof for the prefent quary. But I conccive this to bealready fo evident, that it needs not any fable for iss further confirmation.
2. The other doubt was, whether the ftrengul of the orher purfons within ir, will be fufficient for che noving be in the raifing of it from the ground; near unto which, the earchs atraCtive vigor is of greateft efficacy. But for the better effecting of this, it may be helped by the Itreagch of winds, and by. taking its firt rife from fome mountain, or other high place. When once ir is alofr in the arr, the motion of it will be cafic, as it is in the ilight of all kind of birds, which being at any great diftance from the earth, arc able to continue thcir motion for a long time and way, with little labour or wearinefs.
'Tis certain from common relation and experience, cthat many hirds do crols the feas for divers hundred miles eogether : fundry of them amongit us, which are of a fhort wing and Aight, as Blackbirds, Nighringales, \&ic. do fly from us into Girmant, and other remoter Councries. And Mariners do co:mmonly affirm, that they have foun! lowe fowl above fix hundred miles from any land. Now
rindito.
c. \(: 3\) to labour fo much in thofe long journeys, as they do when they By in our fight, and near the earth, it were impoffible for any of them to pals to tar without refting. And therefore it is probable, that they do mount unto to high a place in the air, where the natural heavinefs of their bodies does prove bur little or no impediment to their flight; Though perhaps either hunger, or the fight of thips, or the like accident, may fometimes occafion their defcend. ing lower, as we may guefs of thofe birds, which Marinershave thus beheld; and divers others, that have teen drowned and caft up by the fea,

Whence it mav appear, that the motion of this Charior (though it may be difficult at the firft) yet will till be eafier, as it afcends higher, till at length it thall become utrerly devoid of gravity, when the lealt ftrength will be able to beftow upon it a lwift morion: as I have proved

Cap. 8. Mechanical Morions. more at large in another difcourfe.

Buc then, (may fome obiett) If it be fuppoled that a man in the sthereal air does lofe his own heavinels, how thall he contribute any force towards the motion of this inftrument?

I anfwer, The ftrength of any living creacure in thefe cxternal motions, is fomerhing really diftintt from, and fisperadired unto its natural gravity; as common experience may thew, not only in the impreffion of blows or violent motions, as a River-Hawk will frike a fowl with a far greater force, than the meer defoent or heavinels of his body could pollibly ferform : But alfo in thole attions which are done withour fuch help, as the pinching of the finger, the biting of the teeth, of all which are of much greater ftrength than can proceed from the meer heavinefs of thole parts.

Asfor the other particular doubts, concerning the extreme thinnefs and coldnefs of this zthereal air, by realon of which ir may feem to be al. altogether impaffible, I have already refolved them in the above-cited difcourle.

The ules of fuch a Chariot may bo various; Hefodes the difcoveries which mighe be thereby made in the Lunary world; It would be ferviceable allo for the convegance of a man to any remote place of this earth : as luppole so the indies or shtipod:s. For when onec it was elevated for fome fiew miles, fo as to be above thar Orb of Magnetick virtue, which is carried about by the earths diurnal revolutiun, it might then be very. eafily and Ipcedily-direded to any particular place of \(\cdot\) this great Globe.

If the place which we intended werc under che lame parallel, why then the earths revolurion once in twenty four hours, would bring it to be under us; fo that it would be but defeending in a ftreight line, and we might prefendly be there. If it were under any other paralled, it would then only require that we fhould direct it in the lame Meridianatill wedid cone to

Cap. 8. Mecbanical Motions.
that parallel; and then (as before) a man might eafily defcend unto it.

It would be one great advancage. in this kind of rravelling, that one nould be perfectly freed from all inconveniences of ways or weather, not having any extremity of heat, or cold, or Tempeits to moleft him : This \(x\) thereal air being perperually in an equal remper and calmnefs. l'ars fuperior mumdi ardinstior eft nec in mubem cogitur, sec incempeftasers impellitar, net verfatur in turbinem, cmaj sumnitu caret, inferiors fulenomaws. The upper parts of the worldare al. ways quier and ferene, no winds and bluftring there; they are thefe lower cloudy regions thar are fo full of cempelts indcombuftion.

As for the manner how the force of a fpring, or (initead of that) the frength of any living perfon, may be applied to the motion of thefe wings of the Charior, it may caflily be apprehended from what was tormerly delivered.

There are divers orher particulars to be more fully enquired after, for

Aswell too long as 100 Short, teo broad as toonsio row, muy be in impediment to the motion, by making it more difficule, flawi and laging the perfecting oi fuch a flying Cha riot as conculling she proportion of the wirigs boin for their length and breadrl; in comparifon to the weight which is to be carried by them, as alfoconcerning thofe fpecial contrivances, whereby the Arengli of thele wings may be feverally applied either to alcear, deficent, pro. grellive, or a turaing motion; All which, and divers the like enquiries can only be refolved by particular experiments. We know the invention of Giling in fhips does continually receive fome new addition from the experience of every age, and hath been a long while growing up to that perfection, unto which it is now arrived. And fo mut it be expected for this likewife, which may at firit perhaps feem perplexed with many difficulties and inconveniences, and Yet upon the experience of frequent tryals, many things may be fuggefted to make it more facil and commodiOLS.

Cap. 8. Mecbanical Motions:
He that would regularly attempt any thing to this purpole, fhould obferve this progrefs in his experiments, hefthould firft make enquiry what kind of wings would be molt ufeful to thisend; thofe of a Bat being molt eafily imitable, and perhaps nature did by them purpofely incend forme intimation to direct us in fuch expeciments; that creature being not properly a bird, becaufe not amongtt the Ovipura, to imply that other kind of creatrucs are capable of llying as well as birds ; and if any fhould attempt it, that would be the beft pattern forimisation.

After this, he might try what may be effetted by the force of fprings in leffer models, anfwerable unto frchytas his Dove, and Regiomomsamas his Eagle ; in which he mult be careful to oblerve the various proportions betwixt che Itrength of the fpring, the heavinels of the body, the breadth of the wings, the fwiftnelis of che motion, \&c.
From thefe he may by degrees alcend to fome larger effays. .. CAP.

\section*{C A P. IX.}

Of a perpetual motion. The fecming facility asd real dufficulty of any fuch, contrivance. The feveral wass wherebrit bath been atttempted, particularly br Clyynifery.

1T is the chief inconvenience of all the Automata before mentioned, that they need a frequent repair of new ftrength; the caules whence their motion does proceed, being fubiect to fail and come to a period; and therefore it would be worth an enquiry, tocxamine, whether or no there may be made any fuch artificial contrivance, which might have the principle of moving from it felf; fo that the prefent motion fhould conflantly be the caufe of that which fucceeds.

This is thar great Secret in Art, whick like the Philofopher's Srone in Nature, hath becn the bufinefs and fudy of many more refined Wits, for divers ages together; and it may well be queftioned, whether either

Cap. 9. Mechanical Motions. 225
of them as yet, hath ever been found out, though if this have, yer like the other, it is not plainly created of by any Author.

Not but that there are fundry dif. courfes concerning this fubje9, but they are rather comjettures than experiments. And though many inventions in this kind, may at firft view beara great flew of probability; yet they will fail, being brought to trial, and will not anfwer in practile what chey promiled in fpeculation. Any one who hath been verfed inthefe experiments muft needs acknowledge that he hath been often deceived in his ftrongeft confidence; when the imagination hath contrived the whole trame of fuch an inftrument, and conceives that the event muft fallibly anliwer its hopes; yet then docs it ftrangely deceive in the proof, and difoovers to us fome defect, which we did not before take notice of.

Hence it is, that you will fearce talk with any one who hath never to little fanttering in thefe arts, but he \(Q\) will till further. trial and experience harh taughe him the difficulty of it. There being no enquiry that does more entice with the probabibity, and deceive with the fubtilty. What one fpeaks witcily concerning the Philofophers Stone, may be juftly applied to this, thar ic iscaffa merestrx, a chat Whore, Qura multos invitat, nemisem admitssf, becaufe it allures many, bur admits none.

I hall briefly recite the leveral ways whereby this hath bcen attemp. ted, or feems mo!t likely robe effeOed, thereby to contratt and facilitate the enquiries of thole who are addieted to thefe kind of experiments; for wlen they know the defects of other inventions, they may the more eafily avoid the fame, or the like, in their own.

The ways whereby this harh been attempred, may be generally reduced to thele three kinds :
1. By Chymical extractions.
2. Dy

Cap.9. Mechanical Motions.
2. By Magoctical virtues.
3. By the natural affeCtion of gravity.
1. The difcovery of this hath been attempted by Chymiftry. rarac: If us and his followers have bragged, chat by their feperations and extractions, they can make a little world which flail have the lame perpetual motons with this Microoa/one, with the representation of all Meteors, Thunder, Snow, Rain, the courfes of the Pea in its ebbs and flows, and the like; Buy theie miraculous promises would require as great a faith to believe then, as a power to perform them: And though they often talk of fuch great matters,

At anfguamtotos enter give aha ow. rant,
Apparel illus, gui re miracula tanta Comprober -
yet we canaever fee them confirmed by any real experiment; and then befides, every particular Author in that art, bath fuch a diftinct language of his own, (all of thembeing fo full. \(Q_{2}\) of that'ris very hard for any one (unlef's he be throughly verfed amongft them) to find our what they mean, much more to try it.

One of thefe ways (as I find it

Ettrn Ms sham. Recens praj. 128. fer down) is this. Mix five ounces of 5 , with an equal weight of 4 grind them togerher with ten ounces of fublimate, diffolve them in a Cellar upon fome marble for the fpace of four days, till they become like oyl-olive; diftil this with fire of chaff, or driving fire, and it will lublime into a dry lubftance : and fo by repeating of thefe diffolvings and diftillings, there will be at length produced divers fmall atomes, which being pur into a glafs well luted, and Lept dry, will have a perpetual moti. on.

I cannot fay any thing from ex. perience againlt this; but methinks it does nor leem very probable, be. caule things that are forced up to fuch a vigoroulnefs and adivicy, as thefe ingredients feem to be by their frequent

Cap. 9. Mechanical Motions.
quant fublimatings and diftilings, are not likely to be of any duration; the more any thing is stretched beyond its usual nature, the left does it lat, violence and perpetuity being no companions. And then befides, lip. pole it true, yet fuck a motion could not well be applied to any yule, which mull needs cake much from the delight of it.

Among the Chymical experiments to this purpofe, may be reckoned up that famous motion invented by Cornelius Drible, and made for King 7 andes; wherein was reprefented the conlfant revolutions of the Sun and Moon, and that without the help cither of faring or weights. Marcellus Vrasck/jejn, Speaking of the means whereby it was performed, he calls it, Scintilluls anime magnetics mande, feu Afrulis os infonplibilis fps-Celestased in an Ihpigr.m b) Huge Gratin 1.Epi. Epip. ed Erneficim dit Lati. rises: being that grand fecret, for the difcovery of which, thole DiCtamors of Phitoloply, Demseritus, \(P 1=\) rasgorirs, Plato, did travel unto the Gymnolophilts, and Indian priefts.
\[
03
\]

The

Dadulus ; or, Lib, II.
The Author himself in his difcourfo

Iffy. Ad 7rcabxim, Regrow.

Philnio phical diBlague.
Comfort. з. Sep. 4 upon it, does not at all reveal the way, how it was performed. But there is one 7 hamm \({ }^{\text {Th }}\) Thyme, who was a tamiliar acquaintance of his, and did often pry into his works, (as he profeffes himself) who affirms it to be done thus; By exspatzinig a fury Spirit out of the Mineral matter, joying sher fave with his proper air, which included in the Axcle-rree (of the frt moving wheel) burg hollow, esrritth the other wheel, making a somimul rotation, exeff iffue or vent be given in this hottom axh-tree, nitereby the imprifoned forint mar ret fort.

What trange things may be done by foch extractions, I know nor, and therefore dare not condemn this relasion as iupoffible; but methinks it found. rather like a chymical dream, thana Philufophical truth. It lems this imprifoned flirt is now fer ar libercy, or clii is grown weary, for the inftrument (as I have heard) hath food ital for many years. It is here condicerable, thar any force is weake:t nus: fore though luck a Spirit might of is Self 'have an agitation, yet ie's nor eafily conceivable how it Should have ftrength enough to carry the wheels about with it. A:rd then the abfur. deity of the Author's citing this, wou'd make one miftruft his mistake; the urges it as a ftrong argument against copermutes, as if because Dreble did thus contrive in an Engine, the revolution of the heavens, and the immovableness of the earth, therefore it malt needs follow, that 'cis the heavens whichare moved, and not the earth. If his relation were no eruct than his confequence, ir had not bed worth the citing.

> QA CAP.

\section*{C A P. X.}

Of fubterraneous lamps : divers hifarical relations concersing their aurasion for many buxdred years together.

uNto this kind of Chymical experiments, we may moft probably reduce thofe perperual lamps, which for many hundred years together have continued burning without any new fupply in the fepulchres of theAncients, and might (for ought we know) have remained fo for ever. All fire, and efpecially flame, being of an active and ftirring nature, it cannot thereforc fubfift withour motion; whence it may feem, that this great enquiry harh been this way accomplifhed: And therefore it will be worth our examination to fearch further into the particulars that concern this experiment. Though it be not Co proper to the chief purpole of this difcourfe, which concerns Meshanical Geometry; yet the fubtilty

Cap. 10. Mechanical Motions.
and curiofity of it, may abundantly requite the impertinency.

There are fundry Authors who treat of this Subjection by the by, and in fome particular paflages, but none that I know of (except Forturius Licetus) that hath writ purpolely any fec and large difcourfe concerning it: out of whom I Shall borrow many of nit. thole relations and opinions, which may molt naturally conduce to the prefent enquiry.
for our fuller underttanding of this, thereare thefe particulars to be explained :

1. Firit then, for the \(8 \pi\), or chat there have been finch lamps, it may be evident from fundry plain and undeniable teftimonies: Saint Aufin mentions one of them in a Temple dedicated to Venus, which was always expoled to the open weather, and could never be confumed or exringui hod. To him affentsthe judi-

> De Cirgis.
> Dfs, 2 is . cas. 6.

234
D.edalus; or, Lib. II.
cious Zanchy. Pancyrollas mentions a

Dadeperd. T5F. 35. De igeri-
der Dei pert 1 .
6.4. 6.13.
- Or Aasiect Lacrine c) Lume. miel.1.c.7. Lamp tound in his time, in the fepulcher of Tullia, Cicero's daughter, which had continued there for about is 5 c years,but was prefently exringui. Shed upon the admifion of new air. And'cis commonly related ofledre**s, that in Trfinisn's time there was another burning lamp found in an old wall at * Ed fla, which had remained fo for above 500 years, there being a Crucifix placed by it, whence it hould feem that they were in ufe allo amongit fome Chriftians.

But more efpecially remarkable is that relation celebrated by fo many Au:hors, concerning Olybius his limp, which had continued burning for \(1 ;\) o years. The flory is thus: As a ruftick was digging the ground by Paina, he found an urn or carchen por, in which there was another L!rn, and in this leffer, a lamp clearly burning : on cach fide of it there were two ocher Velfels, each of them full of a pure liquer, the one of gold, the orher of Silver. Eno Chymia artis, (\(f\) moio

Cap. 1o. Mechanical Motions. modo vera potef effe ars chymiz) jurare suffor elementa or muterisom ommiumt, (laith Matarantius, who had the polfeffion of thele things after they were takett up). On the bifger of thele Urns there was this infrription:

Plutoni fucrum munas ne stringite fures. lgmeume en vobis bocquod in orbe lisit, Namque elementa gravi claufir digrifts Lsabure. Vafe fub boe soodico, Maximus Olybius.
Adft /acumdo cuflos fibj sopia cornu,
Nerimespretmem dipitra' laticis, The lelfer Ura was thus infcribed:

Abite hanc polfowi fures,
Vos quid whits, vefiris cum ocnis cmidfaiss?
Abite hime veflio cums Mercurio
Perafato Cadiceatngme,
Domurn boc Maximum, Maximus Olybius
Plutom facrum frcis.
Whence we may probably conieeture, that is was fome Chymical iccret,

\section*{236 Daedalus ; or, Lib. II.} crest, by which this was contrived.
ing No faral.L 12. c. w hs.

Baprifle Ports tells us of another lamp burning in an old marble fepulcher, belonging to forme of the anciont Romans, incloled in a glass vial, found in his time, about the year I 5 so, in the IDe Nefis, which had been buried there before our Saviour's coming.

In the Tomb of Pallius the Ar. exdian who was lain by Tarns in the Trojan war, there was found avo-

Cirri. Nato Fept-fuces. Linurom. 1. 1. C. 11.
her. \(n{ }^{1}\) Aug:s do Goya Dat d. 11.c. 6. the burning lamp in the year of our Lord 1 yon. Whence ir woald rem that is had continued there for above twothoufand and lix hundred years: and being taken out, it did remain burning, not withfanding either wind or water, with which forme did Itrive to quench it; nor could it be exringuifhed till they had fils the liquor in it.

Ladovicks Vivas tels usiof another lamp that did continue burning for \({ }^{10} 59\) y cars, which was found a little before his time.

Such a lamp is likewife related to be

\section*{Cap. io. Mechanical SMotions.}
be fcen in the fepulcher of Francis Roficrofs, as is more largcly expreffed in the confeffion of that fraternity

There is another relation of a certain man, who upon occafion digging fomewhat deep in the ground, did meet with fomething like a door, having a wall on cach hand of it; from which having cleared the earth, he forced opon the door ; upon this there was difcovered a fair Vault, and to. wards the farther fide of ir, the flatue of a man in Armour, fitting by 2 table, leaning upon his leftarm, and holding a fecpter in his right hand, with a lamp burning before him; the floor of this Vault being fo consrived, thast upon the firft teep into is, the flatue would ercet it felf from iss leaning polture, upon the fecond ftep it did lift up the fcepter to ftrike, and before a man could approach near enough to take hold of the lamp, the flatue did frike and break is to picces. Such care was there taken that it might not be ftoln a way, or difcovered. Our learned Cambdes in his defrip-
pays s7: tion of Torkshire, Speaking of the tomb of Conftantius cildo us, broken up in thefe later years,mentions fuch a lamp to be found within it.

There are fundry ocher relations to this purpole. Ruod ad lucernices atsimonixm.l. net, the in omstbur fere monumentis 2. 5. 32. inveniuntur, (laith Tuthorivs). In moft of the ancient Monuments there is fome kind of lamp, (rhough of the ordinary fort): isut thoie perluns who were of greareft note and wifdom, did procure luch as might laft without fupply, for fo many agis together.

Deperdit. gisc. 3. Paycirollus teils us. that it was ulual for the Nobles amongft the Romans, to take Ipecial care in their laft wills, thar they might have a lamp in their Monuments. And to this purpole they did ufually give liberty unto
- fome ol their flaves on this condicion, that they fhould be watchful in maintaining and preferving it. From all whith relations, the firft particular of this eisquiry, concerning the being or exiftence of fuchlamps, may fufficiently a ppear.

Cap. 11. Mechanical Motions. 239

\section*{C A P. XI.}

Several opinions concerning the nature and reafon of thefe perpertual Lasups.

ThHere are two opinions to be an(wered, which doucterly overthrow the chief confequence from thele relations.
1. Some chink that thefe lights fo often difcovered in the ancient tombs, were not fire or flame;, but only fome of thofe bright bodies which do ufually fhine in dark places.
2. Others grant them to be fire, but yer think them to be then firft enkindled by the admilfion of new air when thefe fepulcires were opened.
x. There aredivers bodies (faith

Ariforle) which thine in the dark, as rotten wood, the fales of fome fifhes, fones, the glow worm, the cyes of divers creatures. Cardxn tells us of

SubriLl.g. 2 bird in new Spsem, called Cocorym, whofe whole bedy in very bright, bue hiseyes almoft equal to the light of a candle, by which alone in a dark night one may both write and read; By thefe the luxdisns (faith he) ule to cat their fealting Suppers.
It is commonly rclared and believed, that a Carbuncle does fhine in the dark like a burning coal, from whence it hath iss* name. To which purpofe there is a Itory in elian, of a Stork, that by a certain woman was cured of a broke n thigh, in graritude to whom, this fow laferwards flying by her, did let fall into her lapa bright Carbuncie, which (faith he) would in the night time Chine as clear as a lamp. But this and the like old relations are now generally difbelieved and rejeCted by lcarned men: Doctilfimarum umuium conf(nfur, bujuf. meatr gemmes no: saventimbur, faith

De lep:d cictnautu. l. 2.c. 8. Boctisu de Boor la man very muchskille: in, and inquifite afrer fuch matters; nor is there any ons of name that does from hisown eycelight or experience affirm the real exiftence of any gem fo qualified.
Sone have thought that the light

Cap. 1 1. Mectianical Motions: in ancient tombs hath beenoccafioned from fome fucla bodics as thefe. Fr rif vidisis there had been any p. fifi il ty to preServe fire fol long a frace,'tis likely then that the Ifrectites would have known che "ay, who were to keepit perpetually for their Sacrifices.
But to this opinion it might be replied, That nonc of t!ece Neiticul, or night-flining bodies have beea obferved in any of the Ane:ent Sepulchres, and therefore this is a ni.ecr imagin:ry conjecture ; and then befides, lome of thefe lamps have been taken out burning, and continued io for a confiderable liace afterwards. As for the fuppofed conveniency of them, for the perpetuating of the holy fire amongit the Jews, it may as well be feared teft thefe fhould have occafinned their Idolatry, unto which that Nation was to lirongly addeited upon every flight occafion; nor may it feem frar ge, if the providence of God Should rather pernit this fire fometimes to go out, that foby their carnert prayers, being aiR gain

Levit 9. Sometimes was) the peoples faith might be the better fired up and frengthned by luck frequent miracles.

J King. 18.
38.

De part Alanuti: \(:\) c. 3 .
2. It is the opinion of Gurberims that theft lamps have not continued burning for fo long a face as they are luppoled in the former relations; but that they were then first enflamed by the admiffion of new air, or fuck other occafion, when the fepulchaos were opened: as we fee in thole fat earthy vapours of divers forts, which are oftentimes enkindled into a flame. And'ris laid, that there are forme Chymical ways, whereby iron may be lo heated, that being clolely lured in a glass, it fall conftantly retain the fire for any face of time, though it were for a thoufand years or more; at the end of which, if the glads be opened, and the fret air admitted, the iron fall be as red, hor as if it were newly taken out of the fire.

Rut for answer to this opinion, 'is conitiorable, that Come lars have had infcrip infcriptions on them, expreffing that the lamps within them were burning, when they were firft buried. To which miy be added the experience of thofe which have continued fo for a good fpace afterwards; whereas the inflamation of far and vifcous vapours, does prefently vanifh. The lamp which was found in the Ine Nefis, did burn clenrly while it was inclofed in the glafs; but that being broken, was prefently extinguilhed. As for that Chymical relation, it may rather ferve to prove, that fire may continue fo many ages, without confuming any fuel.

Sothat notwithflanding the oppoGite opiniors, yet 'ris more probable that there have been fuch lamps as have remained bursing, without any new fupply, for many hundred ycars together ; which wasthe firf particular to be explained.
2. Concerning the reafon, why the ar far: Ancients were fo careful in this particular, there are divers opinions. Some think it to be an expreflion of R 2 theis their belief, concerning the foulsimmortality, after is departure out of the body, a lamp amonglt the Egrptians being the Hieroplsphick of life. And therefore they that could not procure fuch lamps, werc yet caretul to have the image and reprefentations of them ingraved on their Tombs.
Ot thers conceive them to be by way of gratitude rochofe infernal Dcities, who took the charge and cuftody of their dead bodies, remasmmg always with them in their Tombs, and were thecefore called Dis manes.

Others are of opinion, that thefe lamp. were only intended to make cheir fepulchres more pleafant and lightfome, that they might not feem to be imprifoned in a dilmal and uncomfortable place. True indecd the drad tody cannot be fenfible of the light, no more could it of is want of burial; yet the fame inftinet which did excire it to the defire of one, didalfo occafion the ocher.

Lisetusu-concludes this ancient cuftometo have a doubie end: I. Po. were nobly born, in whofe Monuments caly they were ufed. 2. Natural, to preferve the body and foul from darknefs; for it was a common opinion amongtt them, that che fouls alfowere much converfant about thofe places where the bodies were buried.

\section*{C A P. XII.}

The moft probable conjelture bons thefe lamps nere framxed. .

T
HE greatef difficulty of this enquiry doth confift in this latt fims. particular, concerning the mamer how or by what porfible means any fuch perpetual flame may be coneriv'd.

For the difcovery of which, there are two things so be more efpecially confidered.
1. The fnuff or wiek, which mult adminifter unto the flame.
2. The oyl, which muft nousifh it.

\section*{246 Dedalus; or, Lib. II.} For the firft, it is gencrally granted thas there are divers fubtances which willireain firewishourconfuming:fuch is that Mineral which they call the Salamanders-wcol, laith our lcarned

NatMys -xpro.774 146. \(\times x\) 8tr.
Drestron

Or Limana Carpofinza, pisemblb \& Orack! diffetw.

P'm. Wif. L 19, es). * Bacom. Iffecxpertess funs zrillos Salamsndire non confumf, fitill \(\dagger\) Tuarbinows Fortiss; and * Wecker from his own knowledg affirms the fame of Plumeallom, that being formed into the likenefs of a wick, will adminifter to the flame, and yet not conlume is felf. Of this nature Jikewife was that which the Ancients did call Limsm virtom, or Asbefisisum : of this they were wont to make garments chat were not deltroyed, but purified by fire ; and whervas the fpots or foulnefs oi cther cloaths are waftied out, in thefe chey were ufually burnt away. The bodies of the ancient Kings were wrapped in fuch garments when they were pur in the funeral pile, that their alles wight be therein preCervet, withour the mixture of any other. The materials of them were not from any herb or vegerable,
ble, as other textils, but from 2 flone called Amianeus, which being bruifed by a hammar, and its earithy nature fhaken out, recains certain hairy fubtances, which may be fpun and woven as hemp or flax. Plizy Gays, that for the precioufnels of it, it did almoft equal the price of pearls. Pancirollus rells us, thar it was very rare, and efteemed precious in ancient times; but now is fcarce found or known in any place, and therefore he reckons it amongft the things that are loft. But L. Vives aftirms, that he hach often feen wicks made of it at Paris, and the fame matter woven into a napIn Ampur. \(4 c_{\text {initr. }}\)
Dath:a.
c. 6. kinat Lowninc, which was clcanfed by being burnt in the fire.
\({ }^{5}\) Tis probable from chele various relations, that there was feveral furts of ic, fome of a more precious, others of a bafer kind, that was found in Cyprus, the deferes of Ind'4, and a cercain Province of Affa: this being common in fome parts of Its\(l\), but is fo Gort and brittle, that is cannor be fpuaintoa thred. And \({ }^{1}{ }_{4}\) there- therefore is useful only for the wicks

Do Liquid Of grimes. lis. 6. 204 of perpetual lamps, faith Beetiws de Boos. Some of this, or very like it, I have upon enquiry lately procured and experimented. But whether it be the tone Aibefius, or only Plumeallium, I cannot certainly a firm. For it feems they are both fo very like, as to be commonly fold for one no. sher (faith the fame Author). How. ever, is does truly agree in this com. mon quality ascribed unto both, of being incombustible, and nor confumable by fire: But yet there is this inconvenience, thar it doth contract lo much fuliginous matter from the earthy parts of the opl, (though is was tryed with Come of the pureftoyl, which is ordinary to be bought) that in a yery few days it did chook and extinguilt the fame. There may polfibly be forme Chemical way to to purifies and defecate this oyl, that it hall not Spend into a footy matter.

However if the liquor be of a clofe ald glutinous confiftency, it may burn without any linuff, as we fee

Cap.12. Mechanical Motions. in Camphire, and fome orher bituminous fubftances. And it is probable that moft of the ancient lamps were of this kind, becaufe the exacteft relations (to my remembrance) do not mention any that have been found with fuch wieks.

Bur herein will confift the greateft difficulcy, to find out what invention there might be for their duration. Concerning which there are fundry opinions.

Saint A.ffin fpeaking of that Lamp in one of the Heathen Temples, thinks that it might either be done by Magick, the Devil thinking thereby to promote the worfhip and c fteem of that Idol to which it was dedicated; or elfe that the art of man mighr make it of fome fuch material, as the ftone Asbrfows, which being once enkindled, will burn withour being confumed. As others (faith he) have conerived as great a wonder in appearance, from the natural
Z.anth. dr

Opiriker Det, per. 1 . 1. 4.6.12. virtue of another fone, making an iron-image feem to hang in theair, by

De Cive. Drt l. af. c. 6. ing placed in the Ceiling, the ocher in the floor.

Others are of opinion, that this may be effected in a hollow velfel, exactIy luted or ftopped up in all the vents of it. And then, if a lamp be fuppoled to burn in it, but for the lealt moment of time, it muft continue fo always, or elfe there would be a \(/\) acesum, which nature is not capable of; If you ask how it flall be nourifbed? it is anfwered, that the oyl of ir being turned into fmoak and vapours, will again be converted into iesformer nature ; for otherwife, if it hould remain rarefied in fo thin a fubftance, then there would not be room enough for that fume which muft fucceed it; and fo on the other fide, there might be fome danger of the Penterstion of bodies, which nature dorh as much abhor. To prevent both which, as it is in the Chymical circulations, where the fame body is oftentimes turned from liquor into vapour, and from vapour inco liquor agaia; fo

Cap. 12. Mechanical Motions: in this experiment, the fame oyl fall be turned into fume, and that fume Shall again convert into oyl. Always provided, that ehis oyl which nourimes the lamp, be fuppoied of 50 clole and tenacious a lubitance, that may flowly evaporate, and fo there will be the more leifure for nature to perfect thefe circulations. According to which contrivance, the lamp within this veffel can never fili, being always fupplied with fufficient nourifhment. That which was found in the Ine Nefrs, inclofed in a glafs vial, mentioned by Baptifft Porta, is thoughe to be made after fome fuch manner as this.

Orbers conceive it poffible to extratt fuch an oyl out of fome Minerals, which fhall for a long face ferve to nourinh the flame of a lamp with very little or no expence of its own fubtance. To which purpofe (fay they) if gold bedilfolved into anunEtuous humour; or if the radical moifture of that metal were leparated, it might be contrived to burn (perhaps

Hophaer
Leximul. 3 .
6. 18.

Combt.anir.
1) 578. (pcrhaps for ever, or rat leaft) for many ages together, withour being confumed. For if gold it felf (as experience fhews) be fo untameable by the fire, that after many meltings, and violent heats, ir does fcarce dıminifh; 'ris probable then, that being diffolved into an oylie fubstance, it might for many hundred years together continue burning.
There is a litele Chymical difcourfe, to prove chat Urim and Thummim is to be made by art; the Author of this Treatife affirms that place, Gee.6. 16. Where God tells Noah, Aivindoso Gait shou make in the Ark, to be very unfirly rendered in our Tranlation a window, becaufe the Original word רir lignifies properly flendor or light; and chen befides, the air being at that time to extremely darkned with the clouds of that exceflive rain, a window could be but of very little ufe in regard of light, unlefs chere ware fome other help for it; from whence he conjectures that borh this Splendor, and Co likewife the Urim
and

Cap. 1 2. Mechanical Motions.' cal preparations of light, aniwerable to thele fubterrancous lamps; or in his own phrafe, it hath the univerfal/pivit fixed is a tran/parsant body.

It is the opinion of Licetus (who hath more exactly fearched into the fubtilkies of this enquiry) that fire does not need any humour for the nouribment of it, but only to detain it from flying upwards. For being it felf one of the chief elements (laith he out of Tbeopliraflms) it were ablurd to think that ir could not fubfift without fomething to feed it As for that fubftance which is confumed by it, this cannor be faid to foment or preferve the fame fire, but only to ge nerate new. For the better underftanding of this, we mult obferve, that there may be a threcfold proportion betwixt fire, and the humour or matter of it. Either the humour does exceed the ftrength of the fire, or the fire does exceed the humour; and according to both thefe, the flame doth prefenily vanifh. Or elfe
elfe laftly, they may be both equal in their virtues, (as it is berwixt the radical moifture and natural heat in living creatures) and then neicher of them can overcome or deltroy the 0 ther.

Thofe ancient lamps of fuch long duration, were of this later kind. But now, becaufethe qualities of heat or cold, drynels or moifture in the ambient air, may alter this equality of proportion betwixt them, and make one ftronger than the other; therefore to prevent this, the Ancients did hide chele lamps in tome caverns of the earth, or clofe monuments: And hence is it, that at the opening of thele, the admiffion of new air unto the lamp does ulually caufe lo grear an inequality berwixt the flame and the oyl, that it is prefently extiaguifhed.

But fill the greatelt difficulty remains how to make any fuch exact proportion betwixt an unctuous humour, and fuch an attive quality, as the heat of fire; or this equality being
ing made, it is yeta further difficulty how it may be preferved. To which purpole, Lucetws shinks it polfible to extratt an inflamicabic oyl from the fone Asbeftus, Amiantut, or she metal Gold, which being of the fame pure and homogenious glature with thofe bodies, fhall be to proportioned unto the heat of fire, that it cannot be confiumed by it, but being once inflamed hould continue for many ages, without any fenfible diminution.

If it be inthe power of Chymiftry to perform furch frange effetts as are commonly experimented in that which they call anrum fulmisans, one fcruple of which fhall give a louder blow, and be of greater force in defcent, than half a pound of ordinary Gunpowder in afcent; why may it not be as feafible by the fame art to extract fuch anoyl as is here enquired after: fince it mult needs be more difficult to make a fire which of its own inclination fhall tend downwards, than to concrive fuch an unGuous

\section*{256 Dadalus; or, Lib.II.} Ctuous liquor, wherein fire fhall be ma. ntained for many ycars without any new fupply?
This have I briefly fet down the relations and opinions of divers learned men concerning thefe perpetual lamps; of which, though there have been fo many fundry kinds, and feveral ways to make them, (fome being able to refift any violence of weathers, others being eafily cxtinguifhed by any little alteration of the air ; fome bcing inclofed round about within glafh others being open); yet now they are all of them utterly perithed amongit the orther ruines of time; and thofe who are moft verled in the fearch after them, have only recovered fuch dark conjectures,from which a man cannot clearly reduce any evident principle that may encourage him to a particular trial.

Cap. 13. Mechanical Motions:"

\section*{C A P. XIIL.}

Concerning feveral aitcompss of contriwing a perpetual motion by Maymetical virtur's.

THEfecond way whereby the making of a perpetual motion hath been attempted, is by Magnerical virtues; which are not without fome ftrong probabilities of proving effeCtual to this purpofe: clipecially when we confider, that the heavenly revolutions, (being as the firtt pattern imitated and aimed at in thefe attempts) are all of them performed by the help of thele qualities. This great Orb of earth, and all the other Planets being but as fo many Magnetical Globes endowed with fuch various and continual motions, as may be moft agreable to the purpoles for which they were intended. And therefore molf of the Authors who treat concerning this invention, doagree, that the likelieft way to effua it, is by the le kind of qualitics.
\(25^{8}\)

Geliers. de Augnet. Colane pitiof. Nagros.
t. 4. 5. 20.

Aiforar jiritur. is Arts i.. \(\because-\) mi,i.t.par. 1 prapis. P. 4.
 mj:u comit. Havo'
\({ }^{3}\) Do Rats frgetui zusime. par. -6.3 .
CD: *isti(1). TCTMOH!
1. H + \(\mathrm{T}^{\mathbf{S}}\).
D. mJgwt.
f. 2.235 .

Dadalus ; or, Lib. II.
It was the opinion of Per. Peregrimes, and there is an example pretended for is in Brttinzs) Apiar. 9. Progym. 5. pro. 11). That 2 Magnetical Globe or Terella, being rightly placed upon its poles, would of it felf have a conftant rotation, like the diurnal motion of the earth. But this is comnionly exploded, as being againit all experience.

Others think it pollible, fo to conrrive leveral pieces of fteel, and a lradfione, thinc by their continual attraction and expulfion of one another, they may caufe a perpetual ro volucion of a wheed; OI this opinion were 'Taifner, ' Pat. Peregrinus, and ' Cardin, our of dntomers, de Fanisi. But D. Gillert, who was more efpecially verled in Magnetical experiments; concludes ir to bea vain and groundlefs fincy.
But amongit all thefe kind of invention, that is molt likely, wherein a ioaditone is fo difpofed, that it fhall draw unro it on a reclined plane, a bullet of deet; which fteel, as it aScends

Cap. i . Meckunical Motions.
feends near to the loadftone, may be concrived to fall down through fome hole in the plane, and to to return unto the place from whence at linft it began to move; and being there, the loadfone will again attract it upwards, till coming to this hole, it will fall down again: and fo the morion will be perpetual, as may be more calily conccivable by this figure.
 fented at \(A B\), which though it have. nor Arength enough to atract the bullet \(C\), direally fiom the ground, yet may do it by the help of the plane \(E F\). Now when the buller is come to the sop of this plane, its own gravity (which is juppoled to exceed the firengtliof the loaditone) will make it fall into that hole at \(E\) : and the force it reccives in this fall, will carry is, with fych a violence unto the other cind of flis arch, that it will open the palfage which is there made forit, and by its reurn will again fhur is ; fothat the bultet (as' at the firlt) is in the fame place whence it was attraated, and confequenty muft move perpetually.

But however this invention may fecm ro be of fuch frong probability, yet there are linindry particulars which may prove it infufficient. For, \(\therefore 1\). This bullet of fteet muft firt be tôuched and have its feveral poles, or elfe there can be little or no atsractionof 15. Suppofec in the fteel
po beanfwerable unto \(A\) in the fone, and to \(B\); In the attraction, \(C D\) mult always be direted anfwcrable to \(A B\), and fo the motion will be more difficult, by reafon there can be no rotation or turning ronnd of the bullcr, bue it mulf fide up with the line \(C D\), anfwerable to the axis \(A B\).
2. In its fall from Eto , which is motus etementaris, and proceeds from its gravity, there muit needs be a rocation of is, and to 'ris odds but it happens wrong in the rife, the poles in the bullet being not in the fame direction to thofe in the magnet; and if in this reflux is hould la fall our, thar \(D\) fhould be directed towards \(B\), there thould be rather a flight than an attration, fince thole two ends do repell and not draw one another.
3. If the loadfone \(A B\), have fo much ftrenget that it can attratt the bullet in \(F\), when it is not turned round, but does only flide upon the plane, whereas its own gravity would roul it downwards: then it is evident, the fphercof this attivity and frength would be fo increafed when ic approaches much nearer, that it would not need the affiltance of the plane, buit would draw it immediarely to ic felf withour that help, and lo the bullet would nor fall down through the hole, but alcend to the ftone, and confequently ceate its motion. For it the loadthone be of force enough to draw the huller on the plane, at the diltance FH, clien mult the flrength of it be fis ficient to attract it immediately unto it felf, when it is fo much nearer as \(E B\). And if the gravity of the bullet be fuppofed fo mich to exceed the flrengthof the Magnet, that it cannor draw is directly when it is fo near, then will it not be able to atrract the hutler up the plane, when it is fo much furthe off.

So that nene of all thefe Magneticalerperiments, which have been as fer dilcovered, are fufticient for the effecting of a perperual motion, though thefe kind of quatities feem moft condiucible unto it, and per-
haps

\title{
Cap. 14. Mechanical Motions.
}
baps hereafter it may be contrived from them.
CAP. XIV.

The fleming probability of effrtin? a continual motion br fold menights in 4 bollore model ar folicere.

T
HE third way whereby the making a perpetual motion lath been attempted, is by the natural affection of gravity; when she heavy. nets of Several bodies is fo contrived, that the lame motion which they give in their descent, may be able to carry them up again.

But among it the poltibility of any foch invention, it is thus ohe:ted by Corder ; All sublunary bodice: have a direct motion either of al \(\operatorname{nn}\) or dcfeent; which, becauleir dons refer to Come terint, therefore cannot to perpetal, but mart needs create wien is is arrived at the place unto which ic naturally tends.

I answer; Thoughathis may prove \(\mathrm{S}_{4}\) the any particular heavy body, which is perpetual; yet ir doth not hinder but that it is pofible from them to contrive foch an artificial revolution as shall conftandy be the cause of it tell.

Thule bodies which may be ferviceable to this purport, are diftinguifhable into two kinds.
r. Solid and conliftent, as weights of metal or the like.
2. Fluid or sliding, as water, land, \(\& c\).

Both there ways have been attempred by many, though with very lit.
D. Fud. Tran. 2. par 2.12. 4.07. the or no fuccefs. Other men conjeClures in this kind you may fee ret down by divers Authors. It would be too tedious to repeat them over, or fer forth chair draughrs. I Shall onty mention two new ones, which (if I am not over partial) rem altogether as probable as any of there kinds that have been yet invented; and till experience had difcovered their defect and infufficiency, I did ermainly

\section*{Cap. 14. Mecbanical Motiots.}
cainly conclude them to be infallible. The firlt of thefe contrivances was by folid weights being placed in fome hollow wheel or lphere, unto which they Thould give a perpetual revolution. For (as the Philolopher hath largely proved) only a circular motion can properly be perpetual.

But for the berter conceiving of this invenrion, it is requifice that we rightly underftand fome principles in Trochilicks, or the Art of Wheel-inItruments : As chicfly, the relation betwixt the parts of a wheel, and thofe of a Ballance ; the feveral proportions in the Semidiameter of a wheelbeing anfwerable co the fides in a Ballance, where the weight is multiplied according to its diftance from the cen-

Aiphan cheme.c. z . Dr ratianue didtat al
 ter.

\author{
Thus
}

\section*{\(266^{\circ}\) \\ Dedalus; or, Lib. II.}

Thas fuppofe the center to be at \(A\), and the Diameter of the wheel \(D C\), to be divided into equal parts (as is here exprefled) it is evident according to the former ground, that one pound at \(C\), will be equiponderate to five pound at \(B\), becaufe there is fuch 2 proportion berwixt their fe. veral diftances from the Center. And it is nor material whether or no thefe feveral weights be placed horizontally; for chough \(B\) do hang lower
chan

\section*{Cap.14. Mechanical Motions.'} than \(C\), yet this does not at all concern the heavinels; or though the plammet \(C\) were placed much higher dan ir is as \(E\), or lower at \(F\), yer would it ftill retain the fame ueight which in hadat \(C\), becaufe the plummets' (as is the nature of all heavy bodies) do tend downwards by a traight linc: So that their feveral gravities are to be meafured by that part of the horizontal Semidiamerer which is diredly either below or a hove them. Thus when the plummet \(C\), Shall be moved either to \(G\) or \(H\), it will lofe \(\frac{?}{1}\) of its former heavinefs, and be equally pornderous as if ir were placed in the bal. lance at the number 3 ; and if we fuppofe it to be fituated at /or K', then the weight of it will lie wholly apon the Center, and not at all conduce to the motion of the wheel on either fide. So that the ftraight lines which pals through the divifions of the diameter, may ferve to mealure the heavinefs of any weight in its feveral ficuations.

There things throughly confidered, it feems very poflible and eafie for a man to contrive the plummets of a wheel, that they may be always heavier in their fall, than in their afcent, and fo confequently that they Should givea porpetual motion to the wheel it felf: Since it is impolfible for that to remain unmoved, as long as one fide in it is heavier than the 0 ther.

For the performance of this, the weights muft be fo ordered, 1. That in their defcent they may fall from the Center, and in their afcent may rifo nearer to ic. 2. That the fall of each plummer may begin the motion of that which hould liucceed it. As in this following Diagram.

Cap. 14. Mechasical Motions.

Where there are 16 plummets, 8 in the inward circle, and as many in the outward, (the equality being to arife from their fituation, it is therefore moft convenient that the number of them be even). The cight inward plummets are fuppofed to be in themfelves fo much heavier than the other, that in the wheel they may be of equal weight with thefe above them, and then the fall of thele will be of fufficient force to bring down

\section*{270 Dedalus ; or, Lib. II.} down the other. For example, if the ourward be each of them 4 ounces, then the in ward muft be \(\varsigma\), becaufe the our:ward is diftant from the center of thofe parts, whercof the inward is but 4 Each pair of thefe wcights Mould be joyned together by a litele ftring or chain, which muft be faftried abopt the middle betwixt the bullet and the center of that plummet, which is to fall firft, and at the topof the other.
When thefebullets in their defcent are at their farthent diftance from the center of the wheel, then fhall they be ftopped, and reft on the pins placed to that purpofe; and Co in their rifing there muft be other pins to kcep them in a convenient pofture and diftance from the center, left approaching too near unto it, they thereby become unfit to fall, when they fhall come to the top of the defcending fide.

This may be otherwife contrived with fome different circumftances; but they will all redound to the fame effect. very probable, that a man may produce a perpetual morion. The diftance of the plummets from the center increafing their weight on one fide; and sheir being ryed to one another, cauling a conftant fucceffion in their ralling.

But now, upon experience I have found this to be fallacious; and the scafon may fufficiently appear by a calculation of the heavinels of each plummet, according to its feveral fcituations; which may calily be done by thole perpendiculars that cut the diameter, (as was before explained, and is here exprelled in five of the plummets on the defcending fide). From fuch a calculation it will be evident, that both the fides of this wheel will equiponderate, and fo confequently that the fuppoled inequality, whence the morion fhould proceed, is but imaginary and groundlefs. On the defeending fide, the heavinefs of cach plummer may be meafured according to thefe numbers, (fuppofing the diameter

272
Dadalus; or, Lib. IL. ammeter of the wheel to be divided into twenty parts, and each of thole fabdivided into four).

The impart plummets.
\[
\left\{\begin{array}{ll}
1 & 0 \\
7 & 2 \\
7 & 2 \\
3 & 0
\end{array}\right\} \text { The } 19 \text { fum }
\]

On the afcending fine the weights are to be reckoned according to there degrees,

The fum of which lat numbhers is equal with the former, and therefore both the fides of fuch a wheel, in this fituation will equiponderate.

Cap.14. Mechanical Motions.'
If it be objected, That the plummet \(A\) hould be conerived to pull down the otherat \(B\), and then she defcending fide will be heavier than the other.

For anfwer to this, it is confiderabe,
1. That thefe bullets towards the top of the wheel, cannot deficend cill they come to a certain kind of inclination.
2. That any lower bullet hanging upon the other above it, to pull it down, muft be conceived, as if the weight of is were in char point where its fring touchesthe upper; at which point this bullet will be of lefs heavinefs in refpett of the wheel, than if it did reft in its own place : So that borly the fides of it in any kind of fituation may equipandeate.

> T CAP.

\section*{CA P. XV.}

Of compofing a perpetual motion by fiuid weughts. Concerming Archimedes bis nater-forcon. Ting greas probability of acromplifbing abis engury by the help of that; with the falliblenefs of is uponexperiment. :I:
\(\rightarrow\) Hat which I Shall mention as thi lalt way, for the trial of this experimont, is by contriving it in fome water-inftrument; which may feem altogether as probable and eatie as any of the reft, becaule that element by reafon of its Alaid and fubcil narure (whereby of its own accord it fearches our the lower and more narrow paffages) may be molt pliable to the mind of the Arrificer. Now the ufual means for the afcent of water, is either by Suckers or Forcers, or fomething equivalens chereunto; Neither of which may be conveniently applied unto fucha work as this, becaule there is required unto each of them fo much or more ftrengeth, as may be anfwera-
ble to the full weight of the water that is to be drawn up; and then befides, they move for the molt part by firs and fiatches, fo that it is not eaflily conceivable, how they hould conduce unto fuch a motion, which by realon of its perpectuity mult be regular and equal.

Bur amonglt all other ways to this purpofe, that invention of Archimedes is incomparably the beft, which is usially called cochice, or the Waterfcrev, being framed by the Helical revolution of a cavity about the Cy linder. We have not any difcourfe from the Author himfelf concerning it, nor is is certain whecher the ever writany thing to this purpole. But if he did, yer as the injury of time hath deprived us of many other his excellent works, fo likewife of this, amongit the reit.

Alhencus Speaking of that great fhip Dipnofis.
built by Hiero, in the framing of 1.5 . which there were 300 Carpunters employed for a year together, befides many other hirelings for carriages,

276 Dedalus; or, Lib.II. and fuch fervile works, mentions this inftrument, as being inftead of a pump for that vait Ship; by the help of which, one man might eafily and fpeedily drain out the water, though it were very deep.
n:3ibri. 4. 1.

Diodorus Sicalus fpeaking of chis engine, tells us, that Archimedes invenred it when he was in Esppt, and that it was ufed in that Country for the draining thofe pits and lower grounds, whence the waters of Nilus coūld not return. \$insrixprs
 the fameA uthor). It being an engine fo corkun. ingenious and artificial, as cannot Subtrit. 1. De figurut. 4. be fufficiently expreffed or commended. And fo (it مould feem) the Smith in Milliain conceived it to be, who having without any teaching or information found it out, and therefore thinking himfulf to be the firit inventor, fell mad with the mecr joy of \(i\).

The nature and manner of making

Archates. latore 11. this, is more largely handled by \(V\) ttruvius.

\section*{Cap. 1 5. Mecbanical Morions.:} The Figure of is is after this manner.

Where you fce there is a Cylinder \(A A\), and a firal cavity or pipe rwining about it,according to equal revolutions \(B B\). The axis and centers of its motions are at the points \(C D\). upon which being turned, it will fa happen that the fame part of che pipe which was now lowermoft, will prefently become higher, fo chat the water does aficend by defcending ; 2fcending in comparifon to the whole inftrument, and defcending in refpect
 of its feveral parts. This being one of the ftrangeft wonders among thofe many, whercin thcle Mathematical arts do abound, that a hcavy body fhould rife by falling down; and the farther it paffes by its own natural motion of defcent, by lomuch higher ftill fhall it afcend; which though it feem fo evidently to contradit all reafon and Philofophy ; yet in this inftrumens it may be manifefted both by demonftration and Penfe.
This pipe or cavity for the matrer of it, cannot eafily be made of metal, by reafon of ics often turnings; but for trial, there might be fuch a cavity, cut in a column of wood, and atiterwards covered over with tin plate.
For the form and manner of making this fcrew, Vitruvzus does prefrribe thefe two rules:
1. That there mult be an equality obferved betwixt the breadth of the pipe, and the diftance of its fe. veral circumvolutions.
3. That there mult be fuch a pro-

Cap. 1 5. Mechanical Motions:
portion berwixt the lengeh of the inItrument, and its clevation, as is anfiverable to the Pythagorical Trigon. If the Hypotenulal, or Screw be s, the perpendicular or elevation mult be 3 , and the balis 4 ?

However (with his leave) neither of thefe proportions are generally necelfary, but hould be varied according to other circumftances. Affor the breadth of the pipe in refpect of ies revolutions, it is left at liberty, and may be coartived according to the quancity of water which ir should contain. The chief thing to be confidered is the obliquity or clofenefs of thefe circumvolutions. For the nearer they are unto one'another, the higher may the inftrument be erected; there being no other guide for its true elevation but this.

And becaufe the right underftanding of this particular is one of the principal matters chat concern the ure of this engine, therefore I Thall endeavour with brevity and perlpicuity to explain it. The firft thing
\[
\mathrm{T}_{4}
\] inclination thefe Helical revolutions of the Cylinder have anto the Horizon; which may be thus found out.

Let \(A B\) reprefent a Cylinder with swo perfect revolutions in it; unto which Cylinder the perpendicular line \(C D\) is equal: the hafis \(D E\) being luppolid so be double unto the compalis or circumference of the Cylinder. Now it is cercain that the angle CED, is the fame with that by which the revolutions on the Cylinder are framed ; and that the line \(E C\), in comparifon to the bafis \(E D\), does fhew the inclination of thefe revolutions unto the Horizon. The ground and demonftration of this, are more fully fet down by Guidus Wbaldus, in his Mechanicks, and that

Cap. 15 : Mecbanical Motions. other Treacife De Cochles, which be writ purpofely for the explication of this inftrument, where the fubrilties of it arc largely and excellently hand. led.

Now if this Screw which was befare perpendicular, be fuppoled to decline unto the Horizon by the angle \(F B G\), as in this fecond figure ;

then the inclination of the revolutions in it, will be increafed by the angle \(E D H\), though thefe revolutions will Ptill remain in a kind of alcent, fo that water cannor be turned through them. But

But now if the Screw be placed fo far declining, that the angle of its inclination FBG, be lefs than the angle \(E \subset D\), in the triangle, as in this other Diagram under the former ; then the revolutions of it will delcend to the Horizon, as does the line EC, and in fuch a pofture, if the Scicw be turned rounid, warer'will afcend through its cavity. Whence it is eafe to conceive the certain declination whercinany Screw muft be placed for iss own conveyance of water upwards. Any point betwixt \(H\) and \(D\), being indelcent; but yce the more the Screw declines downwards towards \(D\), by to much the more water will be carried up by it.

If you would know the juft quantity of water which every revolucion does contain and carry, according to any inclination of the Cylinder, this thay be cafily found by ateribing on if an Ellipfis, parallelio the Horizon; which Ellip fis will Shew how much of the revolution is empty; and how much fill.

\section*{Cap.15. Mechanical Motions:}

The true inclination of the Screw being found, together with the certain quantity of water which every Helix does contain; it is furtherconfiderable, that the water by this Inftrument does alcend naturally of it felf without any violence or labour, and that the heavinefs of it doth lie chiclly upon thic centers or axis of the Cylinder, boch its fides being of equal weight (kiith Vboldus) ; So that Mid. . 3 . (it hould fecm) though we fuppole \({ }^{1+4 p .4}\) each revolution to have an equal quantity of water, yet the Screw will remain with any part upwards (according as it fhall be fet) without turning it felf cither way. And therefore the leaft Atrength being added to cither of its fides, fhould make it defeend, according to that common Maxime of Archimedes; any addition will make that which equiponderates with another, to tend down- mol. 3. wards.

But now, becaule the weight of this inftrument, and the water in ic, docs lean wholly upon the axis, hence hence is it (faith Vbaldus) that the grating and rubbing of thefe axcs againft the fockets wherein they are placed, will caufe fome inepitude and refiftency to that rotation of the Cylinder, which would otherwife enfue upon the addition of the leaft weight to any one fide; But (faith the fame Auchor) any power chat is greater than this refiftency which docs arife from the axis, will ferve for the turning of it round.

Ilwfe chings confidered together, it will hence appear, how a perpetual motion may leem cafily contrivable. For if there were but fuch a waterwheel made on this inftrument, upon which the itream that is carried up, may fall, in its defcent it would turd the frew round, and by that means convey as much water up, as is required to move it; fo that the motion muft needs be continual, fince the fame weight which in its fall does turn the whed, is by the turnimg of the wheel carried up again.

Or if the water talling upon one wheel,

\title{
Cap. 1 5. Mechanical Motions. 28.5
} wheel, would not be forcible cnough for this effet, why then there might be two or three, or more, according as the length and elevation of the inffrument will admit; By which means the weight of it may be fo multiplied in the fall, that it thall be equivalent to twice or thrice that quantity of water which alcends. As may be more plainly difcerned by this following Diagram.

\section*{Where}

Cap. 1 9. Mechanical Motions:
Where the figure \(L A\), at the botcome does repretent a wooden Cylinder with Helical cavities cut in it, which at \(A B\), is fuppoled to be covered over wirh tin plates, and three water-wheels upon it, HIK. The lower ciftern which contains the water being CD. Now this: Cylinder being turned round, all the tvacer which from the ciftern afeends thro' it, will fall into the velfel as \(E\), and from that veffel being conveyed upon the water-wheel \(H\), fhall conlequently give a circular motion to the whole Screw: Or if this alone fhould be too weak for the turning of it, then the fame water which falls from the wheel \(H\), being reccived into the other veffel \(F\), may
from thence again defeend on the from thence again defcend on the
wheel \(I\); by which means the force of it will be doubled. And if this be yet infufficient, then may the water which falls on the fecond wheel \(J\), be received into the orher velfel ©, and from thence again delcend on the third wheel at \(K\) : and lo for as many

There is anotlier like con. trivaneo to this putpole in Pet.Bettix. dpint. 4 Pryem \(1:\) Prop. 10. but with much jes. advanpge than "tis here propolut.
many other wheels, asthe inftrument is capable of. So that befides the greater diftance of thefe three freams from the cenner or axis, by which they are made fo much heavier; and befides, that the fall of this ourward water is forcible and violent, whereas the afeent of that within, is natural ; Befides all this, there isthrice as much water to rum the Screw, as is carried upby is.

But on the other fide, if all the water falling upon one wheel, would be able to turn it round, then half of is would ferve with two wheels; and the reft may be fo difpoled of in the fall, as to lerve unto lome other ufeful delighrfulends.

When I firlt thought of this invension, I could farce forbear with Arcismedes to cry out Bupne Wpare ; It feeming lo infallible a way for the effecting of a perperual motion, that nothing could be fo much as probably objected againft is: But upon trial and experience \(I\) find it altogether infufficient for any fuch purpofe

\section*{Cap. 15. Mechanical Motions.'} purpole, and that for thefe two reafons:
1. The water that afcends, will not make any confiderable ftream in the fall.
2. This fream (though multiplied) will not be of force enough to turn about the Screw.
1. The water afcends gently, and by intermiffions, but ic falls continuately, and with force; each of the three veffels being luppofed full at the firft, that fo the weight of the water in them might add the greater ftrength and liwifnefs to the ftreams that defcend from them. Now this fiwifnefs of motion will caule fo great a difference berwixt them, that one of thefe little ftreams may fpend more water in the fall, thana fream fix times bigger in the afcent, though we hould fuppofe both of them tobe continuate; How much mare then, when as the afcending water is vented by firs and incermiflions, every circumvolution voiding only fo much as is conV. tained

290
Daedalus; or, Lib. II. rained in one Helix: And in this partitular, one that is not verfed in chefoo kind of experiments, may be cafily deceived.

But lecondly, though there were Lo great a disproportion, yet notwith. standing the force of there outward ftreams might well enough ferve for the turning of the Screw, if it were To that both its fides would equiponderate, the water being in them (as Ubsldas hath affirmed). But now upon farther examination, we fall find this affertion of his, to be utterly againft both icalon and experience. And herein does conlitt the chief miltake of this contrivance. For the afcending fide of the Screw is made by the water contained in it, to much heavier than the defending fade, that there outward firearms thus applied, will not be of force enough to make them equiponderate, much less to move the whole. As may be more cafily differned by this figure.

Cap.15. Mechanical Morions. 29 :

Where \(A B\), reprefents a Screw covered over, CD E one Helix or revolution of ir, \(C D\) the alcending fide, \(E D\) the defcending fide, the point \(D\) the middle. The Horizontalline C \(F\), fhewing how much of the Helix is filled with water, viz. of the afcending fide, from \(C\) the beginning of the Fidix, to \(D\) the middle of it; and on the delcending fide, from \(D\) the middle, to the point \(G\), where the Horizontal does cut the Helix. Now it is evident, that this latter part \(D G\), is nothing near to much, and confequently not lo heavy as the other \(D C\). And thus is it in all the orher revolutions, which as they are cither more, or larger, fo
\[
\mathrm{V}_{2} \text { will }
\] will the difficulty of this motion be increafed. Whence it will appear, that the outward ftreams which defcend, mult be of fo myebroyce as to countervail all that weight wherchy the afcending lide in every one of thele revolutions does exceed the other; And though this may be effected by making the water-wheels larger; yet then the motion will be fo nlow, that the Screw will not be able to fupply. the ourward Areams.

There is another contrivance to this purpole mentioned by Kircber de Migarete', 1. 2. p. 4. depending upon the heat of the Sun, and the force of winds; but it is liable to fuch abundance of exceptions, that it is icarce worth the mentioning, and does by no means deferve the confidence of any ingenious Artift.

Thus have I briefly explained the probabilities and defects of chofe fulstil conerivances, whercby the inaking of a perpetual motion hath been atrempted. I would be loth to dilcourage the enquiry of any ingenious Artificer,

\title{
Cap. 15. Mechanical Motions.
}

Artificer, by denying the pollibility of effecting it with any of thele Mechánical helps; but yet (I conceive) if thofe principles which concern the nownels of the power in companifon co the greatnefs of the weight, were rightly underftood, and throughly confidered, they would make this experiment to feem (if not altogether impo(fible, yet) much more difficule than otherwife perhaps it will appcar. However, the inquiring after it, cannot but deferve our endeavours, as being one of the moft noble amongit all thele Mechanical fubtileics. And (as ir is in the fable of him who dug the Vineyard for a hid rraafure, though he did not lind the money, yer he thereby made the ground more fruitful ; fo) though we do not attain to the effecting of this particular, yec our fearching after it may difcover to many other excellent fubtilties, as Thall abundantly recompence the labour of our enquiry.

And then befides, it may be anosher encouragement to confider the pleafure
pleafure of fuch fpeculations, which do ravifh and fublime the thoughts with more clear Angelical contentments. Archimedes was generally fo taken up in the delight of thele Mathematical ftudies of this familiar
ixxcias xy curoixx
 pluterch newsell. Tom. Jsco:res, chil. Huf. 35. vilir. Naxim. 1. 8.4. 7. Siren, (as Plut arcl) ftiles them) that he forgot both his meat and drink, and other ncceflities of nature ; nay, that he neglected the faving of his life, when that rude foldier in the pride and halte of victory, would not give him leafure to finifh his demonitration. What a ravifhment was that, when having found out the way to meafure Hiero's Crown, he leaped out of the Bath, and (as if he were fuddenly poffeft) ran nalecd up and down, crying éupnexatupxea! It is floried of Thales, that in his joy and gratitude for one of thefe Mathematical inventions, he went prefeutly to the Icmple, and there offered up a folemn liacrifice. And Pythagoras upon ti:c like occafion is related to have facrificed a hundred Oxen. The juftice of providence ha*

Cap.15. Mechanical Motions. 295 ving fo contrived it, that the pleafure which there is in the fuccefs of fuch iduentions, fhould be proportioned to the grear difficulty and labour of their inquiry.

\section*{FINIS.}

\section*{B O O K S lately Printed fot Richard Baldumin.}

TRuth brought to light br Time ; ör the moff remarkable Tranfuctions of the forft fourteenTears ofKing James's Rergm. The fecond Edition, with Add ditions.

A New, Plain, Shorr, and Compleas French and Englifh Grammer ; whereby tbe Learuedinay atcain in fen Months to Speak and Write French Correctly, as they do now in she Court of France. And wherein all that is Dark, Supcrfluaus, \(\alpha x d\) Deficient in other Grammers, is Plain, Short, and Methodically fapplied. Allo very afeful to Strangors, that are defirous so learn the Englifh Tongue: Forwhofe fake is added a Short, bus very Exart Englifh Grammer. The Second Editson. By Perer Berault.

The Devour Chriftian's Preparation for boly Dyimg. Confffing of Ejaculations, Pragcrs, Medisations and Hymws, adapted to the fiveral Srates and Condisinss of this Life. And on the forr laft Things, Viz. Death, Judguent, Hea. ven, and LHell```

